

Our Goal:

3D human pose estimation (HPE) with a single wrist-mounted camera.

Difficulties:

- High data preparation cost

synthetic data remains high.

- Body parts are occluded

body parts are occluded from the camera's line of sight.

Proposed Method:

Key Point 1: Low-cost synthetic training data generation

a lower cost than conventional methods.

framework following [1].

captured in real-world for inference.

Contributions:

- mounted 360° camera.

Silhouette-based Synthetic Data Generation for 3D Human **Pose Estimation with a Single Wrist-mounted 360° Camera**

Ryosuke Hori*, Ryo Hachiuma*, Hideo Saito*, Mariko Isogawa[†], Dan Mikami[†] * Keio University, [†]NTT

Experiments and Results

Experiments were conducted on the following datasets. The results show that our method outperforms other baseline methods.

MoCap Test Data: 360° camera images with MoCap data.

In-the-Wild Data: 360° camera images with 2D joint position data obtained from side view images to verify the effectiveness of our method in real-world environments.

MoCap Test Data

MPJPE: Euclidean distance between the estimated and the ground-truth 3D poses.

	V					V
	MoCap Test Data (MPJPE)					In-the-Wild Data
Method	Walk	Jump	Crouch	Raise hand	All Frames	E _{key}
RGB	0.346	0.311	0.284	0.407	0.339 ± 0.068	0.330 ± 0.074
Optical Flow	0.118	0.192	0.145	0.128	0.132 ± 0.070	0.352 ± 0.091
SS Silhouette	0.227	0.256	0.229	0.173	0.227 ± 0.057	0.275 ± 0.073
Ours	0.106	0.147	0.138	0.106	$\textbf{0.115} \pm \textbf{0.053}$	$\textbf{0.198} \pm \textbf{0.083}$

- domain gap between synthetic and real-world data.
- We achieved higher estimation accuracy quantitatively and qualitatively compared with other baseline methods.

Reference

[1] Y. Yuan and K. Kitani, "Ego-Pose Estimation and Fore-casting as Real-Time PD Control," in IEEE/CVF International Conference on *Computer Vision*, 2019, pp. 10081–10091.

Paper ID : 2554

In-the-Wild Data

E_{kev}: Euclidean distance between the estimated and the ground-truth 2D poses.

Conclusion

Our pose estimation network is trained only on synthetic silhouette image data

Silhouette-based approach reduces the data generation cost and bridges the

