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ABSTRACT

In this paper, we propose a framework for 3D human pose
estimation with a single 360◦ camera mounted on the user’s
wrist. Perceiving a 3D human pose with such a simple set-
ting has remarkable potential for various applications (e.g.,
daily-living activity monitoring, motion analysis for sports
enhancement). However, no existing work has tackled this
task due to the difficulty of estimating a human pose from a
single camera image in which only a part of the human body is
captured and the lack of training data. Therefore, we propose
an effective method for translating wrist-mounted 360◦ cam-
era images into 3D human poses. We also propose silhouette-
based synthetic data generation dedicated to this task, which
enables us to bridge the domain gap between real-world data
and synthetic data. We achieved higher estimation accuracy
quantitatively and qualitatively compared with other baseline
methods.

Index Terms— 3D human pose estimation, 360◦ camera,
data synthesis, silhouette, domain adaptation

1. INTRODUCTION

Vision-based 3D human pose estimation has been widely re-
searched in recent years. Especially, 3D human pose estima-
tion with wearable cameras is key to many important appli-
cations, such as lifelogging in terms of medical assistance,
monitoring for life support, virtual reality, and sports activity
analysis. Several methods that use wearable cameras mounted
on the head or chest have been proposed recently [1–6]. How-
ever, thus far, there is no method with a more practical cam-
era setting, i.e., a single wrist-mounted camera which could
be introduced in smartwatches in the future.

Therefore, we propose a framework for estimating 3D
poses from images taken with a single wrist-mounted cam-
era. This task is quite challenging as some human body parts
are hidden from the camera’s line of sight. As shown in Fig. 1,
we make use of a single 360◦ camera (GoPro Max) and a con-
volutional neural network-based framework following Yuan
and Kitani’s work [5] to estimate a 3D human pose with only
limited visual information. The difficulty is how to prepare
the training data; there is no existing dataset for 3D human
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Fig. 1. Our 3D human pose estimation with a single wrist-
mounted 360◦ camera.

pose estimation with wrist-mounted cameras. Existing works
with body-mounted cameras that faced this issue tackled it
by using synthetic data [1–4]. However, as widely known in
these previous works, there is a domain gap issue between
real-world data and synthetic data.

To overcome these issues, we also describe a simplified
method for generating training data. We generate silhouette-
based equirectangular image sequences given only existing
motion capture (MoCap) data to train the network. It re-
duces the data generation cost, and because the data are fully
silhouette-based, it reduces the problem of domain gaps be-
tween synthetic data and real-world data.

To summarize, our contributions are as follows:
(1) We are the first to propose a 3D human pose estimation
framework given a single wrist-mounted camera, which con-
tributes to many important applications.
(2) To reduce data generation cost, and to bridge domain gaps
between synthetic and real-world data, we describe a method
for silhouette-based training data synthesis. This data gen-
eration method has the potential to be used for other camera
settings.
(3) We provide extensive experimentation and show that our
method outperforms other baseline methods.

2. RELATED WORK

Human pose estimation has long been studied in the computer
vision community [7]. In particular, 3D pose estimation us-
ing a monocular camera, which is the most widely used sen-
sor in the world, has been actively examined because of its
usefulness in various situations, such as video surveillance,
human–computer interaction (HCI), and self-driving [8].



Fig. 2. Overview of our 3D pose estimation method using a single wrist-mounted 360◦ camera. The training process requires
only synthetic silhouette images as shown in Fig. 3. For inference, the equirectangular images taken in the real environment are
converted into silhouette images by the silhouetting process (right blue box) and then inputted in the network (left).

Three-dimensional human pose estimation with body-
mounted cameras has also been widely investigated in recent
years. Previous researchers used multiple body-mounted
cameras for whole-body pose estimation [9] and used RGB-
D cameras for upper-body (i.e., hands, arms, torso) motion
estimation [10]. In recent years, methods for whole-body
3D pose estimation with more practical settings have been
proposed, such as using a wearable camera with a wide view-
ing angle to capture more body parts [1–4, 11]. Moreover,
several studies have achieved 3D pose estimation under the
severe condition in which the human body is completely hid-
den from the camera’s line of sight [5, 6, 12]. Thus far, these
existing methods mount the camera on the user’s head or
chest. This paper explores the potential for another camera
setting for user-mounted cameras, i.e., a single wrist-mounted
camera that is considered more practical because it could be
introduced in smartwatches in the future.

The majority of recent wearable camera-based 3D human
pose estimation methods used fisheye cameras, expecting
more body parts to be captured [1–4]. As the conventional
datasets for 3D human pose estimation cannot be directly ap-
plied to these fisheye camera-based methods, these methods
use synthetic datasets dedicated to each method to train their
network. However, these data synthesis processes have a huge
cost to bridge domain gaps between real and synthetic data.
In contrast to the approach of synthesizing more realistic,
high-dimensional data, Xu et al. proposed a low-dimensional
synthetic data generation approach for a pedestrian trajectory
estimation to bridge the domain gaps [13]. Inspired by this
method, we use silhouette synthetic data aiming at reducing
the data generation cost and bridging the domain gap.

3. PROPOSED METHOD

We propose a method for 3D pose estimation using images
from a wrist-mounted 360◦ camera, trained only with syn-

thetic silhouette data generated at a lower cost than existing
conventional methods. During inference, we apply a silhou-
etting process to the actually captured images to bridge the
domain gap between the synthetic data and real-world data.

3.1. Human Pose Estimation Network

The 3D human pose estimation network (Fig. 2) is inspired
by the method proposed by Yuan and Kitani [5]. The network
F takes the input of the equirectangular video frames V1:T
in which the person is silhouetted and predicts the humanoid
state z1:T at each frame. The humanoid state zt consists of the
pose pt (position and orientation of the root, and joint angles)
and velocity vt (linear and angular velocities of the root, and
joint velocities). The model encodes the silhouette image to
ResNet-18 [14] to extract the feature vector ψ1:T ∈ R128 and
feeds it to bidirectional long-short term memory (BiLSTM) to
generate the visual context φ1:T ∈ R128 for each frame. We
then feed it to the multilayer perceptrons (MLPs) and predict
the humanoid state z1:T . The mean squared error (MSE) is
used as the loss function: L(ζ) = 1

T

∑T
t=1 ‖F(V1:T )t− ẑt‖2,

where ζ is the parameter of this network F , and ẑt is the
ground-truth humanoid state. The optimalF∗ can be obtained
by an SGD-based method.

3.2. Training Data Synthesis

To synthetically train the network, we generate pairs of input
silhouetted equirectangular videos and the corresponding 3D
pose of the camera wearer. In a virtual environment, such as
Unity, the 360◦ camera is fixed at the virtual avatar’s wrist
position. By making the virtual avatar move with the MoCap
data, the corresponding input equirectangular image and out-
put 3D human pose sets can be generated. Fig. 3 depicts how
the equirectangular image is generated synthetically.
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Fig. 3. Overview of training data synthesis. We generate bi-
nary images as shown in the lower right.

3.3. Silhouetting process for inference

For inference, we apply semantic segmentation to the equirect-
angular images captured with a wrist-mounted 360◦ camera
and generate a human silhouetted binary image by extracting
the parts labeled as human (Fig. 2). We employ HRNet [15]
as the semantic segmentation network which is trained with
the ADE20K dataset [16]. As the equirectangular images are
heavily distorted at the top and bottom of the image, unlike
the images from the general perspective projection model in
the ADE20K dataset, we apply semantic segmentation not
only to the original equirectangular images but also to the
equirectangular images shifted vertically. Then we merge the
results of the semantic segmentation to obtain the network
input.

Specifically, we first generate three equirectangular im-
ages by shifting them horizontally (yaw axis) at 120° inter-
vals. Second, we generate two images by shifting each one
by ±30° vertically (pitch axis). Third, we apply semantic seg-
mentation to each image and shift them vertically back to the
equirectangular images of the original vertical angle. Fourth,
in each of the three horizontally shifted images, we combine
the three generated silhouette images via the OR operation
and shift them horizontally back to the same position as the
input image. Fifth, we extract the largest silhouette of each
of the three images and merge it via the AND operation. The
image is resized to get the image for input in the network.

4. EXPERIMENT

4.1. Dataset

• MoCap Training and Test Data: We used OptiTrack to
capture the motion data to construct the dataset. Two sub-
jects wore the 360◦ camera on their wrist and were asked to
perform a variety of actions, including walking, jumping,
crouching, and raising their hands. Each take lasted about 5
min, and each subject performed two takes. We used three
of the four takes as the training data and the fourth take as
the test data.

• In-the-Wild Data: We also collected in-the-wild data to
verify the effectiveness of our method in a real-world envi-
ronment. As in the previous MoCap training and test data
collection, the subject wore the 360◦ camera on their wrist
and was asked to perform a variety of actions. This dataset
consisted of 11 videos each lasting about 5 sec. As it is
hard to obtain ground-truth 3D poses in a real-world envi-
ronment, following Yuan and Kitani [5], we captured side-
view poses of the subject, which were used for quantitative
evaluation based on 2D keypoints.

The dataset is available at this link.

4.2. Network Training

The weights of ResNet-18 [14] were pretrained with Ima-
geNet [17], and the Adam [18] optimizer was employed at the
learning rate of 1e− 4. The input equirectangular image was
resized to 224 × 224. When training this network, for each
time step we sampled data fragments in turn for 120 frames (4
sec) and padded 10 frames of visual features ψt on both sides
to reduce the estimation error on the boundary frames when
computing φt. We used Unity as the virtual environment to
generate the training data and MuJoCo [19] to visualize esti-
mated human poses that consisted of 52 degrees of freedom
(DoFs) and 19 rigid bodies.

4.3. Evaluation Metric

Following Isogawa et al. [20], we used the following metrics
to evaluate the accuracy of 3D human pose estimation. For the
estimated and ground-truth keypoints, we set the hip keypoint
as the origin and scaled the coordinate to make the height
between the shoulder and hip equal to 0.5 [m]. The errors in
Table 1 were measured in meters.

• Mean Per-Joint Position Error (MPJPE): For evalua-
tion on the MoCap test data, we employed MPJPE that
measures the Euclidean distance between the estimated
pose and the ground-truth pose. This metric is defined as
1
TJ

∑T
t=1

∑J
j=1 ‖(x

j
t − xroott )− (x̂jt − x̂roott )‖2, where xjt

is the jth joint position of the estimated pose, and x̂jt is the
ground truth. xroott and x̂roott represent the root joint posi-
tion of the estimated and ground-truth poses, respectively.

• 2D Keypoint Error (Ekey): For evaluation on the in-the-
wild data, we employed the pose-based metric Ekey calcu-
lated as 1

TJ

∑T
t=1

∑J
j=1 ‖(y

j
t − ŷ

j
t )‖2, where yjt is the jth

2D keypoint of the estimated pose obtained by projecting
the 3D joints to an image plane with a side-view camera,
and ŷjt is the ground truth extracted with OpenPose [21].

4.4. Baseline Methods

We compared our method against the following baseline
methods:

http://hvrl.ics.keio.ac.jp/~hori/ICIP/Dataset.zip


MoCap Test Data (MPJPE) In-the-Wild Data
Method Walk Jump Crouch Raise hand All Frames Ekey

RGB 0.346 0.311 0.284 0.407 0.339± 0.068 0.330± 0.074
Optical Flow 0.118 0.192 0.145 0.128 0.132± 0.070 0.352± 0.091
SS Silhouette 0.227 0.256 0.229 0.173 0.227± 0.057 0.275± 0.073
Ours 0.106 0.147 0.138 0.106 0.115± 0.053 0.198± 0.083

Table 1. Quantitative results of pose estimation accuracy on the MoCap test data and the in-the-wild data.
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Fig. 4. Qualitative results for each method on the MoCap test data (left) and the in-the-wild data (right).

• RGB: A method that trains the network on synthetic RGB
data as shown in the upper part of Fig. 3 and tests it on real
RGB data taken with a 360◦ camera.

• Optical Flow: The PoseReg method proposed by Yuan and
Kitani [5] that uses optical flows of the input RGB data ob-
tained by PWC-Net [22] as the network input.

• Semantic Segmentation (SS) Silhouette: A method that
trains the network on synthetic silhouette data as shown in
the lower part of Fig. 3 and tests it on silhouette images cre-
ated by applying semantic segmentation to real equirectan-
gular images and extracting the parts labeled as human.

4.5. Results and Discussion

The quantitative results of the pose estimation on the MoCap
test data and the in-the-wild data are shown in Table 1, and
the qualitative results are shown in Fig. 4. The results show
that our method outperforms the baseline methods.

The method using RGB data failed to estimate poses
through the sequences. In addition, although the method
using optical flow data estimated simple motions such as
walking and raising hands relatively well on the MoCap test
data, it failed to estimate poses on the in-the-wild data be-
cause the optical flow of the objects around the subject was
estimated. These methods seem to have failed because of a
large domain gap between the synthetic training data and the
test data collected in the real-world environment.

The method using SS silhouette data also had lower esti-
mation accuracy than ours. Due to the distortion that occurred
in the equirectangular images, the human region segmentation
failed, resulting in very noisy data with the presence of human
regions other than the user who wore the camera.

In contrast, our method produces 3D human poses closer
to the ground truth than any other baseline. The results indi-
cate that our method works effectively, thanks to the synthetic
silhouette training data and the silhouetting process for the in-
ference, which bridges the domain gap between synthetic data
and real data.

5. CONCLUSION

We presented a framework for estimating 3D human poses
with a single wrist-mounted 360◦ camera. Our pose esti-
mation network is trained only on synthetic silhouette image
data generated in the virtual environment. For inference, our
method uses binary silhouette images generated via the sil-
houetting process that takes actually captured images as input.
Our synthetically trained method could reduce the data gen-
eration cost and bridges the domain gaps between synthetic
and real data, which has been an issue in previous researches.
The experimental results showed that our method outperforms
other baseline methods qualitatively and quantitatively. We
believe that as our synthetically trained network for 3D hu-
man pose estimation with a single wrist-mounted camera can
easily be extended to other camera settings, our method con-
tributes to the further development of this research field.
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