# Fast Partition Mode Decision via a Plug-in Fully Connected Network for Video Coding 

Jiaqi Zhang, Meng Wang, Chuanmin Jia, Qi Wang, Shanshe Wang, Siwei Ma and Wen Gao<br>Institute of Computing Technology, Chinese Academy of Sciences,<br>University of Chinese Academy of Sciences,<br>City University of Hong Kong,<br>Peking University.

## Contents

- Introduction
- The Proposed Method
- Experimental Results
- Conclusion


## Introduction

## - ECM is under development

- Adopts DIMD, TIMD, MMLM...
- Nearly 7\% and 14\% bit-rate saving under AI and RA ${ }^{[1]}$
- Encoding complexity dramatically increased

|  | All Intra Main10 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Y | U | V | EncT | DecT |
| Class A1 | $-6.76 \%$ | $-10.85 \%$ | $-12.55 \%$ | $306 \%$ | $235 \%$ |
| Class A2 | $-6.43 \%$ | $-9.83 \%$ | $-6.78 \%$ | $294 \%$ | $226 \%$ |
| Class B | $-5.92 \%$ | $-9.95 \%$ | $-11.25 \%$ | $337 \%$ | $248 \%$ |
| Class C | $-6.73 \%$ | $-8.79 \%$ | $-9.19 \%$ | $329 \%$ | $243 \%$ |
| Class E | $-7.23 \%$ | $-9.70 \%$ | $-9.20 \%$ | $329 \%$ | $286 \%$ |
| Overall | $-6.54 \%$ | $-9.78 \%$ | $-9.92 \%$ | $321 \%$ | $247 \%$ |
| Class D | $-5.70 \%$ | $-7.02 \%$ | $-6.59 \%$ | $332 \%$ | $256 \%$ |
| Class F | $-10.50 \%$ | $-13.32 \%$ | $-14.04 \%$ | $244 \%$ | $285 \%$ |

ECM-2.0 over VTM-11.0 AI

|  | Random Access Main 10 |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Y | U | V | EncT | DecT |
| Class A1 | $-13.50 \%$ | $-15.91 \%$ | $-20.31 \%$ | $342 \%$ | $504 \%$ |
| Class A2 | $-14.37 \%$ | $-17.39 \%$ | $-16.47 \%$ | $321 \%$ | $584 \%$ |
| Class B | $-12.47 \%$ | $-17.52 \%$ | $-17.43 \%$ | $355 \%$ | $548 \%$ |
| Class C | $-14.37 \%$ | $-16.46 \%$ | $-16.52 \%$ | $351 \%$ | $488 \%$ |
| Class E |  |  |  |  |  |
| Overall | $-13.56 \%$ | $-16.89 \%$ | $-17.57 \%$ | $345 \%$ | $529 \%$ |
| Class D | $-15.35 \%$ | $-16.36 \%$ | $-15.88 \%$ | $358 \%$ | $530 \%$ |
| Class F | $-13.20 \%$ | $-16.71 \%$ | $-16.88 \%$ | $319 \%$ | $438 \%$ |

ECM-2.0 over VTM-11.0 RA

## Introduction

## - QTMT partition structure

- Extend CTU size and the maximum transform unit size are extended to $256 \times 256$
- Maximum intra coding block is set as $128 \times 128$



## The Proposed Method

- Learning-based approach - fully connected network
- Shallow architecture with only one hidden layer
- Selected features are easy to acquire
- Easily integrated into the video codec, extricating from the interfaces or platforms


## Feature Extraction

## - The texture information

- Texture information is highly related to CU partition structure
- CU is prone to choose simple and large structure in flatten area. More fine-grain CU partition structure is preferred in the complex
- Directional texture is beneficial for choosing the partition direction



## Feature Extraction

- The texture information
- Four commonly used directional gradients

$$
\begin{array}{rlrl}
G_{h} & =\sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \boldsymbol{P} \times A_{h}, & G_{v} & =\sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \boldsymbol{P} \times A_{v}, \\
G_{45^{\circ}} & =\sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \boldsymbol{P} \times A_{45^{\circ}}, & G_{135^{\circ}}=\sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \boldsymbol{P} \times A_{135^{\circ}},
\end{array}
$$



| 0 | -1 | 0 |  |
| :--- | :--- | :--- | :---: |
| 0 | 0 | 0 |  |
| 0 | 1 | 0 |  |
| (b) $A_{v}$ |  |  |  |


| 0 | 0 | -1 |  |
| :--- | :--- | :--- | :---: |
| 0 | 0 | 0 |  |
| 1 | 0 | 0 |  |
| (c) $A_{45^{\circ}}$ |  |  |  |


| -1 | 0 | 0 |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |
| 0 | 0 | 1 |  |
| (d) $A_{135^{\circ}}$ |  |  |  |

- $G R_{0}, G R_{1}$, and $G R_{2}$ :

$$
\left(G R_{0}, G R_{1}, G R_{2}\right)= \begin{cases}\left(G_{h} / G_{v}, G_{h} / G_{45^{\circ}}, G_{h} / G_{135^{\circ}}\right), & \mathcal{M} \in\left\{B T_{-} H, T T_{\_} H\right\} \\ \left(G_{v} / G_{h}, G_{v} / G_{45^{\circ}}, G_{v} / G_{135^{\circ}}\right), & \mathcal{M} \in\left\{B T_{-} V, T T_{-} V\right\}\end{cases}
$$

## Feature Extraction

- The CU dimension

$$
C S R= \begin{cases}\frac{H}{W^{+H}}, & \mathcal{M} \in\{B T-H, T T-H\}, \\ \frac{W}{W+H}, & \mathcal{M} \in\{B T-, T T-V\},\end{cases}
$$

- Intermediate coding information

$$
\mathcal{S}=\left\{\begin{array}{ll}
1, & \text { if }\left(R_{Q}>R_{B T_{-} V} \| R_{Q}>R_{B T_{-} H}\right), \\
0, & \text { otherwise },
\end{array} \quad \mathcal{D}= \begin{cases}1, & \text { if }\left(R_{B T_{-} H}>R_{B T_{-} V}\right) \\
0, & \text { otherwise }\end{cases}\right.
$$

- Feature set

$$
\mathcal{V}_{\mathcal{M}}= \begin{cases}\left(G R_{0}, G R_{1}, G R_{2}, C S R\right), & \mathcal{M} \in\left\{B T_{-} H, B T_{-} V\right\} \\ \left(G R_{0}, G R_{1}, G R_{2}, C S R, \mathcal{S}, \mathcal{D}\right), & \mathcal{M} \in\left\{T T_{-} H, T T_{-} V\right\}\end{cases}
$$

## The Proposed Method

- FCN Model Architecture
- Four models are designed for BT and TT
- Only one hidden layer, 30 neuron nodes
- Non-linear activation function: Sigmoid and Softmax for hidden layer and output layer



## The Proposed Method

- Limited memory cost

| Model Type | Number of neurons in each layer |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 (input) | 2 (hidden) | 3 (output) |  |  |
|  | 4 | 30 | 2 |  |  |
| $\mathcal{F}_{\mathcal{B} \mathcal{T}_{-\mathcal{V}}}$ | 4 | 30 | 2 | 212 | 0.828 |
| $\mathcal{F}_{\mathcal{T} \mathcal{T}_{-\mathcal{H}}}$ | 6 | 30 | 2 | 212 | 0.828 |
| $\mathcal{F}_{\mathcal{T}_{-\mathcal{V}}}$ | 6 | 30 | 2 | 272 | 1.06 |

## The Proposed Method

- Working flow
- Two pre-defined threshold $\alpha$ and $\beta$ for BT and TT



## Training and Implementation

- Training with Pytorch ${ }^{[1]}$
- Dataset: BVI-DVC
- Loss function: Cross-entropy-loss
- Learning rate: $2 * 10^{-5}$
- ADAM optimizer
- Implementation
- Collect the weight and bias matrix of the optimal FCN model
- The implementation in video codec conforms to C++ standard format without deep learning library interface


## Experimental Results

- Tunable computational complexity reduction
- Achieving 14.62\%~50.39\% time savings
- Better performance on 4K

| Class | Sequence | $\mathcal{C}_{1}$ |  | $\mathcal{C}_{2}$ |  | $\mathcal{C}_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BD-BR | TS | BD-BR | TS | BD-BR | TS |
| $\begin{gathered} \text { A1 } \\ 3840 \times 2160 \end{gathered}$ | Tango2 | -0.10\% | 17.55\% | 0.19\% | 32.76\% | 0.30\% | 44.17\% |
|  | FoodMarket 4 | 0.21\% | 9.64\% | 0.03\% | 24.21\% | 0.16\% | $34.26 \%$ |
|  | Campfire | 0.31\% | 21.32\% | 0.65\% | 36.19\% | 1.68\% | 52.69\% |
| $\begin{gathered} \text { A2 } \\ 3840 \times 2160 \end{gathered}$ | CatRobot | 0.26\% | 19.88\% | 0.69\% | 39.14\% | 1.23\% | 48.26\% |
|  | DaylightRoad2 | 0.30\% | 19.40\% | 0.95\% | 35.33\% | 1.49\% | 49.62\% |
|  | ParkRunning3 | 0.02\% | 9.11\% | 0.13\% | 29.09\% | 0.36\% | 51.82\% |
| $\begin{gathered} \text { B } \\ 1920 \times 1080 \end{gathered}$ | MarketPlace | 0.02\% | 6.88\% | 0.33\% | 30.92\% | 0.90\% | 51.97\% |
|  | RitualDance | 0.35\% | 9.07\% | 0.58\% | 23.81\% | 2.71\% | 45.58\% |
|  | Cactus | 0.27\% | 13.46\% | 0.66\% | 31.46\% | 1.43\% | $52.50 \%$ |
|  | BasketballDrive | 0.18\% | 13.41\% | 0.49\% | 27.55\% | 1.12\% | 49.97\% |
|  | BQTerrace | 0.38\% | 12.52\% | 0.62\% | 28.00\% | 1.18\% | 50.78\% |
| $\underset{832 \times 480}{\mathrm{C}}$ | BasketballDrill | 0.12\% | 25.32\% | 1.02\% | 36.88\% | 3.39\% | $55.62 \%$ |
|  | BQMall | -0.03\% | 16.22\% | 0.51\% | 31.00\% | 1.80\% | 53.53\% |
|  | PartyScene | 0.00\% | 17.97\% | 0.38\% | 33.00\% | 1.06\% | 55.20\% |
|  | RaceHorses | 0.19\% | 17.30\% | 0.68\% | 35.88\% | 1.42\% | 55.58\% |
| $\underset{416 \times 240}{\text { D }}$ | BasketballPass | 0.32\% | 13.29\% | 0.72\% | 24.61\% | 2.09\% | 48.38\% |
|  | BQSquare | 0.12\% | 14.42\% | 0.31\% | 31.39\% | 1.36\% | 50.65\% |
|  | BlowingBubbles | $0.32 \%$ | 20.93\% | $0.77 \%$ | $33.70 \%$ | 1.40\% | 56.37\% |
|  | RaceHorses | $0.00 \%$ | 13.39\% | 0.53\% | 32.00\% | 1.41\% | 51.70\% |
| $\begin{gathered} \mathrm{E} \\ 1280 \times 720 \end{gathered}$ | FourPeople | 0.09\% | 9.92\% | 0.53\% | 26.03\% | 1.75\% | 51.12\% |
|  | Johnny | $-0.26 \%$ | $9.49 \%$ | 0.18\% | 25.54\% | 1.61\% | $49.83 \%$ |
|  | KristenAndSara | 0.23\% | 11.05\% | 0.71\% | $24.22 \%$ | 1.84\% | 49.05\% |
| Average |  | 0.15\% | 14.62\% | 0.53\% | 30.58\% | 1.44\% | 50.39\% |
| Average(A1,A2) |  | 0.17\% | 16.15\% | 0.44\% | 32.79\% | 0.87\% | 46.80\% |

## Conclusion

- A partition mode pruning method based on fully connected network is proposed
- By jointly utilizing local texture information and intermediate coding information
- FCN models are performed as a plug-in module to eliminate the unnecessarily attempted partition modes
- Tunable computational complexity reduction, $15 \% \sim 50 \%$, can be achieved

Thanks!

