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Summary

◼Our approach to lossless image compression
◆Assuming stochastic generative models directly on pixel values

◆Achieving the theoretical limit of the assumed models

◼Contribution
◆Proposal of a stochastic model based on improper quadtrees

◼Results
◆Efficient representation

with fewer regions
(= fewer parameters)

◆Improvement of code lengths
in lossless compression
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Lossless compression as an image processing

◼Coding procedure

◼Assumption of 𝑝 𝒗 𝜽 is implicit.

◼𝒑 does not directly govern the generation of 𝒗.
(Just a vector s.t. σ𝑖 𝑝𝑖 = 1)

◼Difficulty in discussing the optimality of the subroutines 
to 𝑝 𝒗 𝜽 .
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Lossless compression on stochastic generative models

◼Problem setup

◼𝜽 governs the probabilistic generation of 𝒗.
⇒𝜽 can be statistically learned from 𝒗. 
(Implicit correspondence with Subroutine 2)

◼Bayes codes[Matsushima et al, 1991]:
the codes with Bayesian learning of 𝜽
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Previous studies – redefinition of stochastic generative models

◼Some subroutines play a role like parameter learning 
for an implicitly assumed 𝑝 𝒙 𝜽

◼We explicitly redefine the implicit 𝑝 𝒙 𝜽 and derive the 
optimal coding algorithm for it.
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Subroutine Stochastic generative model

Linear prediction
(e.g., [Kuroki et al, 1992], [Wu et al, 1998])

Linear autoregressive model 
[Nakahara and Matsushima, 2020]

Quadtree block segmentation
[Matsuda et al, 2005]

Stochastic quadtree model
[Nakahara and Matsushima, 2020]

Edge prediction 
[Meyer, 1997]

2D-HMM
[Nakahara and Matsushima, 2020]

Predictor weighting and switching
(e.g., [Weinberger et al, 2000], 
[Martchenko and Deng, 2013])

Mixture of priors
[Nakahara and Matsushima, 2021]

Extend in this study
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Proposed stochastic generative model

◼Let both width and height are 2𝑑max.

◼The set of the improper quadtrees whose depth ≤ 𝑑max.

◼One of them is chosen with probability 𝑝 𝑚 .
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Proposed stochastic generative model

◼Parameter 𝜃𝑠 is independently assigned to each block 𝑠
with probability 𝑝 𝜃𝑠 𝑚 .
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𝜃5

𝜃4

Proposed stochastic generative model

◼Pixel value 𝑣𝑡 at block 𝑠 is generated in order of the 
raster scan with probability 𝑝 𝑣𝑡 𝑣

𝑡−1, 𝜃𝑠, 𝑚 .
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𝑣𝑡 depends only on
• The past sequence 𝑣𝑡−1

• The parameter 𝜃𝑠 of 
the block 𝑠 which contains 𝑣𝑡

𝑣𝑡

𝑝 𝑣𝑡|𝑣
𝑡−1, 𝜃3, 𝑚
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The Bayes codes [Matsushima et al, 1991]

◆We cannot use 𝑝(𝑣𝑡|𝑣
𝑡−1, 𝜽𝑚, 𝑚) because true 𝑚 and 𝜽𝑚 are unknown.

◆We estimate it by Ƹ𝑝𝑐 𝑣𝑡 𝑣
𝑡−1 in  Bayesian manner. ⇒ Bayes codes

◼Optimal coding probability 𝑝𝑐
∗ 𝑣𝑡|𝑣

𝑡−1 for our model

◼Bayes codes
◆ Its expected code length converges to the entropy for sufficiently 

large data length[Clarke and Barron, 1990].

◆ Its convergence speed achieves the theoretical limit
[Clarke and Barron, 1990].

◆Efficient text coding algorithms have been constructed based on it 
(e.g., [Matsushima and Hirasawa, 2009]).
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The Bayes codes [Matsushima et al, 1991]

◆We cannot use 𝑝(𝑣𝑡|𝑣
𝑡−1, 𝜽𝑚, 𝑚) because true 𝑚 and 𝜽𝑚 are unknown.

◆We estimate it by Ƹ𝑝𝑐 𝑣𝑡 𝑣
𝑡−1 in  Bayesian manner. ⇒ Bayes codes

◼Optimal coding probability 𝑝𝑐
∗ 𝑣𝑡|𝑣

𝑡−1 for our model

◼Three computationally hard parts
◆1. The summation w.r.t. 𝑚 ← A recursive structure of quadtree

◆2. The posterior 𝑝(𝑚|𝑣𝑡−1) ← Special prior (Detailed in the paper)

◆3. The integral w.r.t. 𝜽𝑚 ← Conjugate prior
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Proposed Algorithm
◼Our algorithm reduces the complexity from 𝑂 ℳ to 𝑂 24𝑑max

without any approximation.
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Doubly exponential w.r.t. 𝑑max

E.g., 𝑑max = 2 ⇒ ℳ = 83,521



Proposed Algorithm
◼Our algorithm reduces the complexity from 𝑂 ℳ to 𝑂 24𝑑max

without any approximation.

◼Factorization based on the independency among the regions
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Experiment 1

◼Purpose: confirmation of the Bayes optimality

◼Setting:
◆We generated 1000 binary images (64x64) as follows:

1. Generate 𝑚 according to 𝑝(𝑚) (detailed in the paper).

2. Generate 𝜃𝑠 according to Beta 𝜃𝑠|𝛼, 𝛽 for each block 𝑠.

3. Generate 𝑣𝑡 according to Bern 𝑣𝑡| 𝜃𝑠 for each block 𝑠.

◆We compressed them by

◼The proposed method with improper quadtrees

◼The method with proper quadtrees

◼JBIG (implementation by [Kuhn, 1995])
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Experiment 1

◼Result:
◆Examples of the generated images

◆Average coding rates (bit/pel)
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Improper QT (proposal) Proper QT JBIG

0.619 0.624 1.811



Experiment 2

◼Purpose: Confirmation of the suitability to real images

◼Result:
◆MAP estimated model 𝑚MAP = argmax𝑚∈ℳ𝑝 𝑚|𝒗 .

◆Average coding rates (bit/pel)
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Improper QT (proposal) Proper QT JBIG

0.318 0.323 0.348

Improper QT (proposal) Proper QT
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Conclusion

◼We assumed the stochastic generative model directly 
on pixel values and achieved the theoretical limit of the 
assumed model.

◼The proposed stochastic model was based on improper 
quadtrees.

◼We obtained the efficient representation with fewer 
regions and improved the average code length in 
lossless image compression.
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