Leveraging Local Temporal Information for Multimodal Scene Classification

Saurabh Sahu¹, Palash Goyal¹

¹Samsung Research America

April 18, 2022

1/10

2 Formulation

5 Summary and Future Work

2

・ロト ・回ト ・ヨト ・ヨト

Motivation

Figure: Inter-frame similarity for visual (leftmost top) and audio features (leftmost bottom). Attention maps from three heads of the baseline self-attention models with visual (top right) and audio (bottom right) features as input.

- Similarity matrices capture high inter-frame correlation present in the video
- Attention maps are quite sparse with vertical lines indicating that only a few selective frames are being attended to get the output
- This can lead to erroneous predictions

GMSA - Formulation

Figure: Block diagonal (left), Toeplitz (center) and Toeplitz-Dilated (right) masks.

• Leveraging local attention maps

$$A_{m} = \operatorname{softmax}\left(\frac{Q_{m}K_{m}^{T}}{\sqrt{d_{m}}} \odot mask_{m}\right)$$
(1)
$$mask_{m}[i,j] = \begin{cases} 1, & \text{if } j \in N_{i} \\ -\infty, & \text{otherwise} \end{cases}$$
(2)

 $mask_m$ enforces a frame *i* to attend to only the frames *j* in its neighborhood N_i by masking out other time-steps

イロト イヨト イヨト イヨト

GMSA - Formulation

• Sharing attention maps

Half of the attentions heads compute global attention maps (as defined in original Transformer architecture) while the other half compute local attention maps as defined in equations 1 and 2.

• Gating attention maps

$$R^{g}, R^{l} = softmax([A^{g}_{m}W^{g}_{g}, A^{l}_{m}W^{l}_{g}])$$
(3)

$$A_m = R^g \odot A_m^g + R' \odot A_m' \tag{4}$$

where $W_g^g, W_g^l \in \mathbb{R}^{T \times T}$ are learnable layers shared across the heads • Gating contextual representations

$$O^g = \operatorname{concat}(A_1^g V_1, \dots, A_M^g V_M)$$
(5)

$$O' = \operatorname{concat}(A'_1 V_1, \dots, A'_M V_M) \tag{6}$$

$$Y^g = O^g W^{og}, \quad Y' = O' W^{ol} \tag{7}$$

$$R^{g}, R^{l} = softmax([O^{g} W_{g}^{g}, O^{l} W_{g}^{l}])$$

$$Y = R^{g} \odot Y^{g} + R^{l} \odot Y^{l}$$

$$(8)$$

$$(9)$$

where $W^{og}, W^{ol}, W^{g}_{g}, W^{l}_{g} \in \mathbb{R}^{D imes D}$ are learnable layers

5/10

	Baseline	ShareAtt			GateAtt			GateOp		
		BD	TP	TD	BD10	TP ₁₀	TD ₈₀	BD20	TP30	TD_{60}^{4}
GAP	85.07	85.18	85.25	85.16	85.21	85.30	85.30	86.03	86.13	85.99
MAP	44.61	44.81	45.04	44.69	44.89	45.28	45.31	47.03	47.49	46.98
PERR	78.97	79.05	79.22	79.03	79.13	79.27	79.21	79.96	80.10	79.88
Hit@1	87.75	87.79	87.92	87.78	87.85	87.96	87.91	88.40	88.49	88.33
Train Time/epoch	43 min		50 min			60 min			49 min	
Disk Size	48.9 MB		48.9 MB			50.2 MB			61 MB	

Qualitative analysis

Figure: Local and global attention profiles obtained for a video in test set. Link: *youtube.com/watch?v=ygORXiV2Zpw*

- Global attention profile is more uneven and puts most attention towards the end of the video showing a crowd of people. Hence, the baseline model predicts the video incorrectly ('Association Football')
- In contrast, local attention profile is more uniform temporally. Using information from both local and global contexts, we get the correct prediction using GateOp model with *BD*₂₀ mask ('News Program')

Importance of local information

Figure: Ratio of local to non-local gradients for visual features

• We measure the sensitivity S_i of an output frame to the local input frames in its neighborhood N_i by computing G[i, j] which denotes the norm of the gradient of output frame Y[i] with respect to an input frame X[j]

$$S_{i} = \frac{avg_{j \in N_{i}}G[i,j]}{avg_{j \in N_{i}}G[i,j] + avg_{j \notin N_{i}}G[i,j]}$$
(10)

• We observe a positive correlation between model performance and sensitivity to local context.

- Enforcing Transformer to learn local and global level attention separately improves model's generalizability
- Outputs of the better performing GMSA models were found to be more sensitive to local input frames than the baseline mode thereby.
- Adding local context could mitigate the effects of incorrect global attention maps

• Future Work

• Using self-supervision to reduce dependency on labeled data

9/10

• • • • • • • • • • •

- Enforcing Transformer to learn local and global level attention separately improves model's generalizability
- Outputs of the better performing GMSA models were found to be more sensitive to local input frames than the baseline mode thereby.
- Adding local context could mitigate the effects of incorrect global attention maps

• Future Work

- Using self-supervision to reduce dependency on labeled data
- Training models on raw videos with new base models such as Multiscale Vision Transformers

9/10

• • • • • • • • • • •

- Enforcing Transformer to learn local and global level attention separately improves model's generalizability
- Outputs of the better performing GMSA models were found to be more sensitive to local input frames than the baseline mode thereby.
- Adding local context could mitigate the effects of incorrect global attention maps

• Future Work

- Using self-supervision to reduce dependency on labeled data
- Training models on raw videos with new base models such as Multiscale Vision Transformers
- Adding local attention maps at various hierarchies.

9/10

< □ > < 同 > < 回 > < Ξ > < Ξ

- Enforcing Transformer to learn local and global level attention separately improves model's generalizability
- Outputs of the better performing GMSA models were found to be more sensitive to local input frames than the baseline mode thereby.
- Adding local context could mitigate the effects of incorrect global attention maps

• Future Work

- Using self-supervision to reduce dependency on labeled data
- Training models on raw videos with new base models such as Multiscale Vision Transformers
- Adding local attention maps at various hierarchies.
- Explore video segmentation techniques to define better neighborhoods for computing local attention maps rather than a fixed-length mask based approach.

(日) (四) (日) (日) (日)

THANK YOU

イロト イヨト イヨト イヨト

æ