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9 Attack models

Approach: capture information about the identity of speaker s from the corresponding speaker-adapted
model 17; and the global model 1/, by comparing the outputs of these two neural AMs taken from hidden

layers /7 on some external speech dataset — analyze the footprint of the NN model on the indicator data.

9 Federated learning and

privacy preservation scenario

° Users (clients): share their personalized model updates
with the server; & no speech data is transmitted.

9 Introduction

Context

* Federated learning:  collaborative
training of machine learning models
while keeping the raw training data
decentralized.

* Automatic speech recognition (ASR)
acoustic models (AM).

* Indirect privacy leakage: adversary
can access the model parameters and
aims to infer information about the
speaker identity.

* Attacker has access: global model 17, & personalized

model 1/, of the target speaker s enrolled in the FL
system & other personalized models of speakers:
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° Attacker’s objective: automatic speaker verification
(ASV) by using the enrollment model 1/, and test trials
in the form of models I/, ,...., W.
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Research question
@How to effectively and easily analyze

(speaker) information in  neural
network AMs?
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Proposed approach AL (W—[pf, o]
°* Use an external indicator dataset to
analyze the footprint of AMs on this

data.
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6 Conclusions

Experimental results
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® ASR acoustic models are vulnerable to privacy attacks which aim to infer
speaker identity from the updated (personalized) models.

® We propose an efficient method to analyze information in neural network
AMs based on a neural network footprint on the indicator dataset.
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