

PremiUm-CNN: Propagating Uncertainty Towards Robust Convolutional Neural Networks

2022 IEEE International Conference on Acoustics, Speech and Signal Processing

Dimah Dera*, Nidhal Buaynaya[†], Ghulam Rasool[†], Roman Shterenberg[‡] and Hassan Fathallah-Shaykh[§]

^{*†}Department of Electrical and Computer Engineering, ^{*}Department of Mathematics and [§]Department of Neurology

> *The University of Texas Rio Grande Valley, [†]Rowan University, ^{‡§}University of Alabama at Birmingham, USA

> > May 9, 2022

Neural Networks

Deep Neural Networks also known knows as convolutional neural networks are composed of multiple levels of nonlinear operations that aim at learning features hierarchies.

IEEE

Machine learning models based on deep neural networks (DNNs) have achieved significant improvements and surpassed human-level accuracy in various learning tasks, including object identification and segmentation, face recognition, speech and text processing, and variety of other tasks [1-5].

Robustness and Trustworthiness

Limitations of Deep Neural Networks

Detected as a speed sign

DNNs are unable to provide calibrated confidence or a measure of uncertainty in their predictions [6].

2. Vulnerability to Noise and Adversarial Attacks

DNNs are vulnerable to noisy or perturbed inputs which might easily drive the model towards an incorrect prediction [7].

Quantifying the confidence of a model's prediction is crucial in applications, where decision-making and control is handed over to autonomous systems, such as autonomous control of drones and self-driving cars and healthcare diagnosis systems.

Bayesian Inference in Deep Neural Networks

Prior: $p(\Omega)$

prior knowledge about the parameters, Ω , before observing any data.

IEEE

Likelihood: $p(\mathcal{D}|\Omega)$

the process by which the data is generated given a particular Ω .

Posterior: $p(\mathbf{\Omega}|\mathbf{D}) = \frac{p(\mathbf{\Omega})p(\mathbf{D}|\mathbf{\Omega})}{\sum_{\mathbf{\theta}} p(\mathbf{\Omega})p(\mathbf{D}|\mathbf{\Omega})}$

captures the total knowledge about Ω after observing \mathcal{D} .

□ The posterior distribution of the parameters is used to find the predictive distribution of any new data point X^{*} by marginalizing out the model's parameters,

$$p(\mathbf{y}^*|\mathbf{X}^*, \mathbf{D}) = \int p(\mathbf{y}^*|\mathbf{X}^*, \mathbf{\Omega}) p(\mathbf{\Omega}|\mathbf{D}) d\mathbf{\Omega}$$

Variational Inference (VI) Framework

- Exact Bayesian inference on the parameters of a DNN is intractable due to the functional form of a DNN that consists of multiple layers of non-linearities and the high dimensionality of the parameter space [13].
- □ Various approaches have been proposed to approximate the posterior distribution of the weights given the data including the well-known Variational Inference (VI) [8 14].
- \Box VI methods approximate the true posterior $p(\Omega | D)$ with a simpler parametrized variational distribution $q_{\phi}(\Omega)$.
- □ The optimal parameters of the variational posterior ϕ^* are found by minimizing the Kullback-Leibler (KL) divergence between the approximate and the true posterior,

$$\begin{split} \phi^* &= \operatorname{argmin} \operatorname{KL} \left[q_{\phi}(\boldsymbol{\Omega}) || p(\boldsymbol{\Omega} | \boldsymbol{\mathcal{D}}) \right] \\ &= \operatorname{argmin} \operatorname{KL} \left[q_{\phi}(\boldsymbol{\Omega}) || p(\boldsymbol{\Omega}) \right] - E_{q_{\phi}(\boldsymbol{\Omega})} \{ \log p(\boldsymbol{\mathcal{D}} | \boldsymbol{\Omega}) \} \end{split}$$

□ The optimization objective is given by the evidence lower bound (ELBO) $\mathcal{L}(\phi; \mathcal{D})$

The Challenge in Density Propagation

• The challenge remains in propagating the variational distribution $q_{\phi}(\Omega)$ over the parameters of a DNN through stacked layers of non-linearities.

We consider a convolutional neural network with:

- One convolutional layer
- □ Nonlinearity (e.g. ReLU activation),
- □ Max-pooling layer,
- □ One fully connected.

Non-linear activation layer – first-order Taylor approximation:

Propagation of Mean and Covariance

$$\boldsymbol{\psi}(z_i) = \boldsymbol{\psi}(\mu_{z_i}) + (z_i - \mu_{z_i}) \frac{d\boldsymbol{\psi}(\mu_{z_i})}{dz_i} + \frac{1}{2!} (z_i - \mu_{z_i})^2 \frac{d^2 \boldsymbol{\psi}(\mu_{z_i})}{dz_i^2} + \cdots$$

 $\mu_{\mathbf{g}_i} = E(\mathbf{g}_i) \approx \boldsymbol{\psi}(\mu_{z_i})$

22-27 MAY 2022

SSP 2022

SINGAPORE

$$\boldsymbol{\Sigma}_{\mathbf{g}^{(k)}} = \begin{cases} \sigma_{\mathbf{g}_{i}}^{2} = Var(\mathbf{g}_{i}) \approx \sigma_{Z_{i}}^{2} \left(\frac{d \boldsymbol{\psi}(\mu_{Z_{i}})}{dZ_{i}}\right)^{2}, & \text{if } i = j \\ \sigma_{\mathbf{g}_{i}\mathbf{g}_{j}} = Cov(\mathbf{g}_{i}, \mathbf{g}_{j}) \approx \sigma_{Z_{i}Z_{j}} \left(\frac{d \boldsymbol{\psi}(\mu_{Z_{i}})}{dZ_{i}}\right) \left(\frac{d \boldsymbol{\psi}(\mu_{Z_{j}})}{dZ_{j}}\right), & \text{if } i \neq j \end{cases}$$

 g_i is the *i*th element of the feature map, ψ is element-wise activation function. We remove the superscript *k* for simplicity.

IEEE

Extended Variational Density Propagation (*exVDP*) **Propagation of Mean and Covariance**

Soft-Max Layer:

$$\mu_{y} \approx \varphi(\mu_{f}), \qquad \Sigma_{y} \approx J_{\varphi} \Sigma_{f} J_{\varphi}^{T}$$
$$J_{\varphi}(\mu_{f}) = \text{diag}(\mu_{y}) - \mu_{y} \mu_{y}^{T}$$

where φ is the Soft-max function and \mathbf{J}_{φ} is the Jacobian matrix of φ with respect to \mathbf{f} evaluated at $\boldsymbol{\mu}_{\mathbf{f}}$.

Unscented Variational Density Propagation (*unVDP***)-Propagation of Sigma Points**

Unscented Transformation:

- □ The linearization, performed in the exVDP propagation may result in accumulation of errors especially in deep neural networks with a large number of stacked non-linear activations.
- The unscented transformation (UT) can provide estimates of the mean and covariance after non-linear transformation which are correct at least up to the third order [15].
- In the UT framework, the probability density function (pdf) is specified using a set of carefully chosen samples, called sigma points.
 Non-Linear Function

Evidence Lower Bound (ELBO) Objective Function

$$\mathcal{L}(\phi; \boldsymbol{y} | \boldsymbol{X}) = E_{q_{\phi}(\boldsymbol{\Omega})} \{ \log p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{\Omega}) \} - \mathrm{KL}[q_{\phi}(\boldsymbol{\Omega}) | | p(\boldsymbol{\Omega})]$$

Backpropagation

□ In the forward pass, we propagated the mean and covariance matrix of the variational distribution $q_{\phi}(\boldsymbol{\Omega})$ across the network layers and calculated the objective function $\mathcal{L}(\phi; \boldsymbol{y} | \boldsymbol{X})$.

□ In the back-propagation pass, we compute the gradient of the objective function $\nabla \mathcal{L}(\phi; y | X)$ w.r.t the variational parameters ϕ and update ϕ using the gradient descent update rule.

Simulation Results and Discussion

Image Classification on MNIST and CIFAR-10

□ We present test accuracy of *unVDP*, *exVDP* compared with Bayes-by-Backprop (BBB), and a deterministic CNN for the MNIST and with Bayes-CNN, and Dropout CNN for CIFAR-10 with varying levels of adversarial and Gaussian noise added to the test set.

MNIST Dataset

0	0	0	0	0	0	0	0	0	0	0	Ō	0	0	0
1	١	Ļ	1	1	1	1	1	ſ	1)	1)	1	4
a	Ъ	г	2	2	2	2	Z	2	2	2	2	Z	2	I
3	3	3	3	ъ	3	3	3	3	3	3	3	3	3	3
ч	4	ч	4	۴	4	4	¥	4	4	ч	4	4	4	4
5	مى	5	5	5	٢	5	వ	5	ح	حى	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	1	7	7	7	7	1	7	7	7	7	7	7)	1
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	5	9	9	8	9	٩	9	9	9

Gaussian noise level	unVDP	exVDP	BBB	CNN
Zero (No noise)	97.9%	97.8%	97.8%	97.7%
Low	95.1%	94.1%	86.4%	79.6%
Medium	86.7%	84.6%	76.7%	70.5%
High	74.8%	73.4%	63.8%	55.9%
Adversarial noise level				
Low	97.5%	96.6%	91.5%	58.7%
Medium	84.9%	84.4%	45.9%	14.7%
High	66.1%	51.6%	16.5%	14.5%

CIFAR-10 Dataset

airplane	🛁 🔊 🛀 🌬	< 🖌 – 🛃		
automobile	æ 🐳 🚈 🖥	👌 🐭 👹 🛃	🛋 🚟 🍋	
bird	S. J. 2	v 🔎 🔍 🖉	i 🗽 🔬 😺	
cat			i 📶 🐳 📝	
deer	Mi 😽 🖌 🕷		7 🖌 🌌	
dog	1 1 K	1 🙈 🚳 👩	C () X	
frog				
horse	- A M 2		2. 1	
ship	- 🕹 😼	- 🗳 🖕 🤌	/ 🗾 🚈	
truck	4 🚳 🛵 🕯	N 🐡 💳 🗟	i 🔥 🔤 🚮	
oise level	unVDP	exVDP	Bayes-CNN	Dropout CNN
noise)	92.5%	91.8%	92.1%	91.0%
V	92.3%	91.4%	87.0%	89.0%
um	91.9%	90.9%	86.8%	87.2%
h	90.1%	89.1%	85.2%	86.0%
noise level				
V	88.2%	88.1%	76.2%	77.0%
um	85.4%	82.3%	69.1%	53.0%
h	76.5%	67.7%	42.2%	33.0%
	airplane automobile bird cat deer dog frog horse ship truck Dise level noise) v um h noise level v um	airplane automobile bird cat deer dog frog horse ship truck Dise level moise) 92.5% v 92.3% am 91.9% h 90.1% poise level v 888.2% am 85.4% h 76.5%	airplane automobile automobile <td>airplane automobile airplane <</td>	airplane automobile airplane <

Self-Awareness and Robustness Analysis of the Output Covariance Matrix

Output Mean and Covariance Matrix of exVDP for Noise-free Input (Correctly Classified Input)

Output Covariance Matrix Prediction 0 2 5 6 7 8 9 1 3 4 0 1.3E-12 -1E-20 6.7E-16 6.9E-15 3.4E-13 3.2E-14 2.9E-18 1.7E-16 8.3E-13 1.2E-08 -7E-15 0 0 4.6E-19 2.4E-14 5.3E-24 -5E-22 3.1E-21 2.4E-20 -1E-25 -2E-19 1.1E-22 3.6E-19 1 -1E-20 1 -5E-16 2.9E-20 4.6E-16 6.8E-19 1.8E-10 2 2 6.7E-16 -5E-22 3E-16 1.4E-16 -6E-15 9.1E-15 3 6.9E-15 3.1E-21 1.4E-16 1.7E-14 -7E-14 1.8E-15 2.8E-20 2.2E-14 3.1E-18 9.2E-14 1.3E-09 3 3.4E-13 1.4E-10 8.4E-13 2.7E-17 7.6E-12 1.2E-07 4.6E-19 -6E-15 -7E-14 -2E-13 2.5E-15 4 4 7.6E-13 5 3.2E-14 2.4E-20 -5E-16 1.8E-15 8.4E-13 1.8E-18 -5E-14 1.2E-16 4.8E-13 8.9E-09 5 6 2.9E-18 -1E-25 2.9E-20 2.8E-20 2.7E-17 1.8E-18 2.2E-21 -5E-18 9.5E-21 2.2E-17 5E-13 6 -2E-19 4.6E-16 2.2E-14 -5E-14 -5E-18 5.8E-12 -2E-16 1.9E-13 2.5E-08 7 -7E-15 -2E-13 7 1.1E-22 6.8E-19 3.1E-18 2.5E-15 1.2E-16 9.5E-21 -2E-16 5.9E-18 1.8E-15 2.5E-11 8 1.7E-16 8 9.2E-14 1.8E-15 9 8.3E-13 3.6E-19 9.1E-15 7.6E-12 4.8E-13 2.2E-17 1.9E-13 1.3E-10 9

> Ground Truth Network Prediction

If the yellow block is not shown, then the network prediction and the ground truth are the same.

Prediction of Deterministic CNN

0	8E-10
1	5E-13
2	6E-09
3	8E-06
4	5E-07
5	1E-08
6	1E-10
7	5E-07
8	2E-08
9	1

Output

Self-Awareness and Robustness Gaussian Noise

Output Mean and Covariance Matrix of exVDP for Input Corrupted with Low level of Gaussian Noise (Correctly Classified Input)

Output Covariance Matrix

											1	realett	511
	0	1	2	3	4	5	6	7	8	9		0	
0	0.0133	8E-07	0.0002	2E-05	0.0003	2E-05	3E-05	0.0001	0.00017	0.0029		0.005	0
1	8E-07	7E-08	1E-07	4E-08	5E-07	5E-08	6E-08	3E-07	2.99E-07	5E-06		1E-05	1
2	0.0002	1E-07	0.0155	1E-05	0.0003	9E-07	2E-05	4E-05	0.000109	0.0013		0.0056	2
3	2E-05	4E-08	1E-05	8E-05	6E-06	2E-06	1E-06	9E-06	7.25E-06	0.0002		0.0004	3
4	0.0003	5E-07	0.0003	6E-06	0.1216	-2E-05	2E-05	0.0001	0.000373	0.0022		0.0153	4
5	2E-05	5E-08	9E-07	2E-06	-2E-05	1E-04	8E-07	1E-05	8.07E-06	0.0003		0.0004	5
6	3E-05	6E-08	2E-05	1E-06	2E-05	8E-07	0.0002	4E-06	1.33E-05	0.0001		0.0005	6
7	0.0001	3E-07	4E-05	9E-06	0.0001	1E-05	4E-06	0.004	6.16E-05	0.0016		0.0028	7
8	0.0002	3E-07	0.0001	7E-06	0.0004	8E-06	1E-05	6E-05	0.0034	0.0018		0.0026	8
9	0 0029	5E-06	0.0013	0 0002	0 0022	0 0003	0.0001	0.0016	0 001753	0 5083		0 9674	9

Ground Truth Network Prediction If the yellow block is not shown, then the network prediction and the ground truth are the same.

Prediction of Deterministic CNN

IEEE Sign(

Proces

0	0.0009
1	6E-06
2	0.0019
3	0.0007
4	0.0234
5	0.0121
6	0.0006
7	0.0038
8	0.0037
9	0.9529

Self-Awareness and Robustness Gaussian Noise

Output Mean and Covariance Matrix of exVDP for Input Corrupted with High level Gaussian Noise (Correctly Classified Input)

Prediction of Deterministic CNN

0	1.1E-11
1	3.9E-16
2	0.00083
3	3.1E-08
4	0.02638
5	0.00825
6	3.2E-18
7	8.5E-06
8	3.8E-06
9	0.96454

Output Covariance Matrix

	0	1	2	3	4	5	6	7	8	9	0	
0	0.72614	7.3E-06	0.02063	0.00011	0.00301	0.00041	5.4E-05	0.02911	0.00164	0.10533	0.03217	0
1	7.3E-06	1.4E-06	5.3E-06	4.6E-08	4.9E-07	4.9E-07	2.9E-08	1.4E-05	1.2E-06	4.7E-05	4.3E-05	1
2	0.02063	5.3E-06	6.30839	0.00028	0.00323	-2E-05	0.0001	0.04422	0.00198	0.1513	0.10437	2
3	0.00011	4.6E-08	0.00028	0.00012	2.7E-06	6E-06	3.2E-07	0.00017	5.1E-06	0.00115	0.00042	3
4	0.00301	4.9E-07	0.00323	2.7E-06	0.05826	-0.0001	9.8E-06	0.00286	0.00048	0.01931	0.00889	4
5	0.00041	4.9E-07	-2E-05	6E-06	-0.0001	0.00451	1.1E-06	0.00222	1.7E-05	0.00518	0.00248	5
6	5.4E-05	2.9E-08	0.0001	3.2E-07	9.8E-06	1.1E-06	1.2E-05	7E-05	5.2E-06	0.00024	0.00013	6
7	0.02911	1.4E-05	0.04422	0.00017	0.00286	0.00222	7E-05	10.2073	0.00447	0.2822	0.1372	7
8	0.00164	1.2E-06	0.00198	5.1E-06	0.00048	1.7E-05	5.2E-06	0.00447	0.00649	0.01209	0.00301	8
9	0.10533	4.7E-05	0.1513	0.00115	0.01931	0.00518	0.00024	0.2822	0.01209	29.1693	0.71129	9

Ground Truth Network Prediction

If the yellow block is not shown, then the network prediction and the ground truth are the same.

Self-Awareness and Robustness Adversarial Noise

Example: Adversarial Noise (the targeted attack class is digit "3")

		Out	put Co	ovaria	nce M	atrix			(Jutpu	t P	redict	tior
	0	1	2	3	4	5	6	7	8	9			
0	2.8E-12	2E-07	1.1E-09	1.4E-07	2.3E-10	8E-11	4.2E-11	1.1E-09	1.8E-09	2.1E-11		2E-07	0
1	2E-07	1.39853	0.00093	0.11747	0.0003	8.4E-05	4.7E-05	0.0006	0.00154	2E-05		0.1529	1
2	1.1E-09	0.00093	7.9E-05	0.00079	1.3E-06	3.5E-07	2.9E-07	7.7E-07	6.6E-06	1.1E-07		0.0011	2
3	1.4E-07	0.11747	0.00079	1.09673	0.00017	6.9E-05	3.8E-05	0.00068	0.00088	1.4E-05		0.8427	3
4	2.3E-10	0.0003	1.3E-06	0.00017	4.4E-06	1.1E-07	1.1E-07	1.3E-06	2.2E-06	2.9E-08		0.0002	4
5	8E-11	8.4E-05	3.5E-07	6.9E-05	1.1E-07	5.7E-07	1.8E-08	1.1E-07	7.6E-07	8.7E-09		9E-05	5
6	4.2E-11	4.7E-05	2.9E-07	3.8E-05	1.1E-07	1.8E-08	1E-07	1.8E-07	3.7E-07	4.5E-09		3E-05	6
7	1.1E-09	0.0006	7.7E-07	0.00068	1.3E-06	1.1E-07	1.8E-07	4.4E-05	6.9E-06	1E-07		0.0011	7
8	1.8E-09	0.00154	6.6E-06	0.00088	2.2E-06	7.6E-07	3.7E-07	6.9E-06	0.00018	2E-07		0.0018	8
9	2.1E-11	2E-05	1.1E-07	1.4E-05	2.9E-08	8.7E-09	4.5E-09	1E-07	2E-07	1.7E-08		2E-05	9

Output Covariance Matrix

exVDP

True: 1, Pred: 3

	0	1	2	3	4	5	6	7	8	9	0		
0	4.35E-07	-0.00033	2.68E-07	0.000318	2.91E-06	2.88E-07	1.17E-06	7.16E-07	1.02E-05	6.49E-09	4.1E-05	0	unvDP
1	-0.00033	19.50457	-0.00061	-19.4682	-0.00653	-0.00066	-0.00265	-0.0016	-0.02399	-1.5E-05	0.59416	1	Plante Streets
2	2.68E-07	-0.00061	1.42E-06	0.000578	5.29E-06	5.18E-07	2.12E-06	1.29E-06	1.85E-05	1.18E-08	7.5E-05	2	 Compared to the second s
3	0.000318	-19.4682	0.000578	19.43496	0.006104	0.000625	0.002506	0.001518	0.021562	1.44E-05	0.40145	ß	이 아이 집에서 이
4	2.91E-06	-0.00653	5.29E-06	0.006104	0.000171	5.64E-06	2.33E-05	1.39E-05	0.000202	1.29E-07	0.00082	4	
5	2.88E-07	-0.00066	5.18E-07	0.000625	5.64E-06	1.62E-06	2.27E-06	1.37E-06	1.99E-05	1.27E-08	8E-05	5	
6	1.17E-06	-0.00265	2.12E-06	0.002506	2.33E-05	2.27E-06	2.72E-05	5.58E-06	8.1E-05	5.14E-08	0.00033	6	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
7	7.16E-07	-0.0016	1.29E-06	0.001518	1.39E-05	1.37E-06	5.58E-06	9.99E-06	4.86E-05	3.12E-08	0.0002	7	Truce 1 Durad
8	1.02E-05	-0.02399	1.85E-05	0.021562	0.000202	1.99E-05	8.1E-05	4.86E-05	0.002048	4.51E-07	0.00285	8	True: 1, Pred:
9	6.49E-09	-1.5E-05	1.18E-08	1.44E-05	1.29E-07	1.27E-08	5.14E-08	3.12E-08	4.51E-07	8.38E-10	1.8E-06	9	

IEEE Signal Processing Society

0	2E-13
1	0.0238
2	8E-08
3	0.9762
4	7E-10
5	5E-08
6	5E-10
7	1E-09
8	8E-06
9	2E-13

Ground Truth Network Prediction

Self-Awareness and Robustness Analysis of the Output Variance

CIFAR-10 Dataset

MNIST Dataset

IEEE

Signal Processi

Society

Self-Awareness and Robustness Analysis of the Output Covariance Matrix

IEEE

- The average test accuracies for the three cases were 97.8%, 84.6%, and 84.4%, respectively.
- Each pixel of the heat-map is a normalized average of absolute value of the covariance for all 10,000 test examples.
- The targeted adversarial examples were generated to fool the model into predicting digit "3" [16].

(c) Adversarial Noise

0.8

0.6

0.4

0.2

0.0

Application to Brain Tumor Segmentation in MRI Images

- □ We evaluate the performance of proposed *exVDP* and *unVDP* models on High Grade Glioma (HGG) brain tumor segmentation task using Brain Tumor Segmentation Challenge (BraTS) 2015 dataset [17].
- □ The uncertainty map will allow physicians to quickly review the segmentation results and, if needed, make corrections of tumor boundaries in the regions where the uncertainty is high.
- □ We evaluated the models before and after adding Gaussian noise or targeted adversarial attack (targeted class is class 3, i.e., "non-enhancing tumor").

Method	Tumor Regions	Noise level		
		Zero	Adversarial	Gaussian
		(No noise)	5%	5%
unVDP	Complete	85.3%	81.7 %	83.0%
	Core	81.9%	78.7%	80.7%
	Enhancing	83.7%	75.4%	81.7%
exVDP	Complete	80.8%	77.4%	80.6%
	Core	74.6%	72.6%	74.5%
	Enhancing	74.0%	69.8%	73.9%
CNN	Complete	78.0%	43.4%	66.9%
	Core	65.0%	47.1%	51.9%
	Enhancing	75.0%	43.9%	55.7%

The evaluation of the segmentation results was done using Dice Similarity Coefficient (DSC).

- 1. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proceedings of the 25th International Conference on Neural Information Processing Systems, (NIPS), 2012, pp. 1097–1105.
- 2. R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (CVPR). IEEE Computer Society, 2014, pp. 580–587.
- 3. E. Shelhamer, J. Long, and T. Darrell, "Fully convolutional networks for semantic segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, 2017.
- 4. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang, M. Someki, N. E. Y. Soplin, R. Yamamoto, X. Wang, S. Watanabe, T. Yoshimura, and W. Zhang, "A comparative study on transformer vs RNN in speech applications," in2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2019, pp. 449–456.
- 5. K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "Deep reinforcement learning: A brief survey," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.
- 6. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, "On calibration of modern neural networks," in Proceedings of the 34th International Conference on Machine Learning, ICML, 2017, pp. 1321–1330.
- 7. S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, "Universal adversarial perturbations," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (CVPR). IEEE Computer Society, 2017, pp. 86–94.
- 8. C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, "Weight uncertainty in neural networks," in Proceedings of the 32nd International Conference on International Conference on Machine Learning, (ICML), vol. 37, 2015, pp. 1613–1622.
- 9. Y. Gal and Z. Ghahramani, "Bayesian convolutional neural networks with Bernoulli approximate variational inference," in Proceedings of 4thInternational Conference on Learning Representations, (ICLR) work-shop track, 2016.
- 10.K. Shridhar, F. Laumann, A. Llopart Maurin, and M. Liwicki, "Bayesian convolutional neural networks,"arXiv preprint arXiv:1806.05978, 2018.
- 11.C. Louizos and M. Welling, "Structured and efficient variational deep learning with matrix Gaussian posteriors," in Proceedings of the 33rdInternational Conference on International Conference on Machine Learning, (ICML), 2016, pp. 1708–1716.
- 12.W. Roth and F. Pernkopf, "Variational inference in neural networks using an approximate closed-form objective," in Neural Information Processing Systems, (NIPS) workshop, 2016.
- 13.C. Louizos and M. Welling, "Multiplicative normalizing flows for variational Bayesian neural networks," in Proceedings of the 34thInternational Conference on Machine Learning, (ICML), vol. 70, 2017, pp. 2218–2227.
- 14.A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernandez-Lobato, and A. L. Gaunt, "Deterministic variational inference for robust Bayesian neural networks," in Proceedings of 7th International Conference on Learning Representations, (ICLR), 2019.
- 15.S. J. Julier and J. K. Uhlmann, "A new extension of the Kalman filter to nonlinear systems," in In Proceedings of SPIE The International Society for Optical Engineering, vol. 3068, February 1999.
- 16.Y. Liu, X. Chen, C. Liu, and D. Song, "Delving into transferable adversarial examples and black-box attacks," in Proceedings of 5thInternational Conference on Learning Representations, (ICLR), 2017.
- 17.B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiestet al., "The multimodal brain tumor image segmentation benchmark (BRATS),"IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993–2024,2014.

The authors would like to thank the financial support of

- □ NSF ECCS 1903466
- □ NSF CCF-1527822
- □ NSF DUE-1610911
- □ NSF CRII: RI-2153413

LOCKHEED MARTIN

National Science Foundation where discoveries begin

ACM SIGHPC/Intel Computational & Data Science Fellowship

ACM SIGHPC/Intel Computational Data and Science Fellows