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Motion Control in Mobile Relay Beamforming Networks

• Next Generation Networks need to accommodate high bandwidth
applications

• High bandwidth becomes available at high frequencies

• High frequencies experience high attenuation

• Relaying =⇒ extend the communication range

• Mobile relays =⇒ more degrees of freedom =⇒ potentially
better performance

• We consider mobile relays =⇒ urban environments =⇒
spatiotemporally correlated channels
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Applications

Figure: Urban communications scenario

• Swarm of drones =⇒ vehicle-to-vehicle (V2V) or
vehicle-to-infrastructure (V2I) communications

• UAVs over a stadium =⇒ extended coverage and surveillance

• Group of drones =⇒ search-and-rescue missions
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Background

Previous methods:

1 Assume knowledge of channels statistics → model-based
[Kalogerias, Petropulu, IEEE TSP, 2018]

2 Relays move in 2 dimensions (Rectangular grid) [Huang, Mo,
IEEE WCNC, 2018] [Evmorfos, Petropulu, IEEE TSP, 2022]

3 Motion of the relays =⇒ discrete in space
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Our Contributions

• Our approach =⇒ model-free (no assumptions for channels
stats)

• We formulate the problem as a continuous MDP =⇒ motion
continuous in space (but discrete in time)

• Randomness of channels =⇒ stochastic policies

• We propose a soft actor-critic algorithm with Sinusoidal
Representation Networks for the critic

• Continuous control =⇒ necessary for performance and scaling in
3D motion

• Our proposition =⇒ excellent performance in 2D and 3D motion
=⇒ without additional complexity or retuning
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Scenario
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• Network with R mobile relays

• Source S, at position pS and Destination D at pD

• pS and pD can either belong in R2 or in R3

• f(pi(t), t) is the channel from the source to the relay i

• g(pi(t), t) is the channel from the relay i to the destination

• The channels exhibit correlations with respect to time and space
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Set up

LoS communication is not feasible, → R relays, each at position pk(t)

Motion of the relays:

• Time-slotted (time slot denoted as t)

• Confined in a 2D plane or 3D cube

During every time slot t, each relay should:

1 Optimally beamform to destination (maximize SINR)

2 Decide where to move for the next slot
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Signal Model

Source S transmits the symbol s(t) ∈ C using power
√
PS > 0

The signal received at the relay located at pk(t) is

xk(t) =
√
Pfk(pk, t)s(t) + nk(t), (1)

• fk: source-relay channel for the k-th relay

• nk(t): reception noise at the k-th relay, white with variance σ2
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Signal Model (2)

Each relay multiplies the signal, xk(t), by weight wk(t) ∈ C

All R relays transmit the weighted signal simultaneously

The signal received at D equals

y(t) =

R∑
k=1

gk(pD, t)wk(t)xk(t) + nD(t), (2)

• gk: relay-destination channel for the k-th relay

• nD(t): reception noise at the destination, assumed white with
variance σ2

D
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SINR at Destination

Maximum SINR solving w.r.t relay weights, s.t total power constraint:

V (t) =

R∑
k=1

PRPS |fk(pk, t)|2|gk(pk, t)|2

PSσ2
D|fk(pk, t)|2 + PRσ2|gk(pk, t)|2 + σ2σ2

D

=

R∑
k=1

VI(pk, t). (3)

[Havary-Nassab et al, IEEE TSP, 2008]

• PR: Total power budget of the relays.

• PS : Total power budget of the Source.
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Reinforcement Learning

Reinforcement Learning (RL) =⇒ Markov Decision
Process(MDP):

The agent, at every time step:

1 experiences state st.

2 chooses action at from a continuous set of actions A.

3 transitions to the next state st+1.

4 collects reward rt.

5 γ, discount factor: how far-sighted the agent is.

Goal: Learn a Policy for choosing actions, to maximize the expected
sum of discounted rewards:

R = E[
T∑

t=t′

γt
′−trt′ ]
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Continuous Control vs Discrete Control

Previous works on relay motion → relays move in space in a discrete
fashion

The drawbacks of discrete control:

• The space needs to be discretized → large overhead + unrealistic
for real-world deployment

• If motion is considered in the 3D space or better performance is
required → finer discretization → curse of dimensionality in
Dynamic Programming

For the above reasons, we consider continuous control → the relays
can move continuously in the space of interest
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Deep Actor-Critic Methods

Deep actor-critic =⇒ State-of-The-Art in model-free continuous
control

Model-free =⇒ deep neural nets for function approximation

• Critic (Value Function):

Neural Network : Learns expected sum of rewards from
state-action pair (MSE with bootstrapping)

• Actor (Policy Function):

Neural Network : Learns the action that maximizes the expected
sum of rewards from given state (policy gradient)
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MDP for Continuous Relay Motion

To employ deep actor-critic we need to formulate an MDP

SINR expression is distributed, therefore we construct one MDP-Policy
shared by all relays

The MDP:

• state(s): position vector of the relay s = [x, y, z]T (or s = [x, y]T

for the 2D case)

• action(a): relay displacement vector a = [dx, dy, dz] (or
a = [dx, dy] for the 2D case)

• reward(r): relay’s contribution to the SINR at destination
VI(pk, t) ≡ VI(s, t)

• discount(γ): quantification of how far sighted the agent (0.99)
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Constraints on the Relay Motion

Relay motion =⇒ continuous in space

But:

• Motion remains discrete w.r.t time

• Clip action to respect space boundaries

• Clip action to avoid collision

• During time displacement interval =⇒ channels do not change

S. Evmorfos ICASSP 2022, Singapore 20/ 38



Soft Actor-Critic

Additional requirements for adopting deep actor-critic methods for
continuous relay control

• Off-policy: The policy learned =⇒ different than the one
generating the data

• Stochastic Policies: Channel randomness =⇒ stochastic reward

Soft actor-critic (SAC): [Haarnoja, Zhou et al, ICML, 2018]

• Off-policy

• Stochastic policy

• Model-free continuous control

Vanilla SAC: Direct adoption of soft actor-critic for continuous relay
motion control =⇒ ReLU MLPs for approximating actor and critic
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Spectral Bias and Instability

Spectral Bias: Inability of ReLU MLPs to capture high frequencies in
low-dimensional regression [Tancik, Srinivasan et al, NeurIPS, 2020]

Actor-critic instability: if critic estimate is inaccurate =⇒ policy
updates accumulate error =⇒ suboptimal policy

Vanilla SAC:

• Critic → ReLU MLP → low-dimensional regression via
bootstrapping

• Channels are highly varying =⇒ underlying Value Function has
high frequencies

ReLU MLP for the critic =⇒ low quality policies
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SIRENs

The Sinusoidal Representation Network (SIREN) architecture was
introduced in [V.Sitzmann, J.Martel et al, 2020, NeurIPS] to tackle the
Spectral Bias of ReLU MLPs

It constitutes of:
• Dense layers

• Sinusoids as activation functions

The SIREN comes with an initialization scheme to handle the
periodicity of the activations between layers:

p

o

o

0

Figure: SIREN architecture - dense layers with sinusoidal activations
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SIREN SAC (Our Proposition)

We propose:

1 Soft actor-critic to solve the formulated MDP for continuous relay
motion control

2 SIREN for parameterizing the critic

We denote our proposed method as SIREN SAC
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Channel Data

We simulate channel data based on a known channel model with
spatiotemporal correlations [D. Kalogerias, A. Petropulu, TSP, 2018]

The log magnitude of the channel has 3 additive components:

• Pathloss

• Multipath (Gaussian i.i.d)

• Shadowing (correlation w.r.t time and space)

We perform 2 different sets of experiments

• for 2D plane (202)

• for 3D cube (203)

S. Evmorfos ICASSP 2022, Singapore 26/ 38



Experiments in 2D
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Figure: Average SINR (in db) for 50 episodes (400 slots per episode and 12
different seeds) for the 2D case - 3 relays and 1 source-destination pair

**TD3: The counterpart of soft actor-critic with deterministic policy
=⇒ ReLU MLPs [S.Fujimotto et al, ICML, 2018]
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Experiments in 3D
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Figure: Average SINR (in db) for 50 episodes (400 slots per episode and 12
different seeds) for the 3D case - 3 relays and 1 source-destination pair

**TD3: The counterpart of soft actor-critic with deterministic policy
=⇒ ReLU MLPs [S.Fujimotto et al, ICML, 2018]
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Specifications

• Every Network (MLP or SIREN) is comprised by 3 layers

• Each layer has 200 neurons

• batch size of 100 experiences

• the size of the Experience Replay is 1e+6

• Adam optimizer with learning rate of 2e-4
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Continuous Control Discussion

2D scenario

• Continuous control =⇒ freedom for relay motion =⇒ better
performance than Deep Q Learning with SIREN (discrete)
[Evmorfos, Petropulu et al, IEEE TSP, 2022]

3D scenario

• Continuous control =⇒ only viable solution, because
discretization induces curse of dimensionality =⇒ Deep Q
Learning cannot converge to good policies
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Results Discussion

• The employment of SIRENs for Value Function approximation
provides significant improvement both in SINR and in stability

• The SIREN SAC algorithm retains the 2D performance in the 3D
case without additional complexity and tuning

• Employing SIRENs for the TD3 provides no improvement
(testament for the necessity of stochastic policies)
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Conclusions

• We have posed the problem of relay motion control in a
continuous model-free set up

• We have focused on off-policy deep actor-critic methods to keep
the sample complexity low, which is critical for real-world
deployment

• We have provided intuition on why stochastic policies are more
suitable than deterministic policies for the problem and verify this
with experiments

• We have proposed an adaptation of the soft actor-critic algorithm
with SIRENs for Value Function approximation that provides
significant boost in overall performance

• We have validated the need for continuous control for scaling to
3D motion (and for better performance in 2D)

• The proposed variation retains the performance of the 2D scenario
on the 3D scenario without need for additional complexity or
retuning
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Reproducibility

• Code for SIREN SAC:
https://github.com/SpiliosEv/SoftActorCriticSIREN3D

• Code for Vanilla SAC:
https://github.com/SpiliosEv/SoftActorCriticVanilla3D

• Code for TD3:
https://github.com/SpiliosEv/TwinDelayed3D
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Thank you!
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