Deep Actor-Critic for Continuous 3D Motion Control in Mobile Relay Beamforming Networks

Spilios Evmorfos[†], Athina Petropulu[†]

[†]Rutgers, The State University of New Jersey, Piscataway, NJ

May 4, 2022

Work supported by ARO under grant W911NF2110071

S. Evmorfos

ICASSP 2022, Singapore

1 Introduction

- **2** Problem Formulation
- **3** Deep Reinforcement Learning for Continuous Control
- 4 Proposed Method
- **5** Experiments

Outline

1 Introduction

- **2** Problem Formulation
- 3 Deep Reinforcement Learning for Continuous Control
- Proposed Method
- **5** Experiments
- 6 Conclusions

Motion Control in Mobile Relay Beamforming Networks

- Next Generation Networks need to accommodate high bandwidth applications
- High bandwidth becomes available at high frequencies
- High frequencies experience high attenuation
- **Relaying** \implies extend the communication range
- Mobile relays ⇒ more degrees of freedom ⇒ potentially better performance
- We consider mobile relays ⇒ urban environments ⇒ spatiotemporally correlated channels

Applications

Figure: Urban communications scenario

- Swarm of drones ⇒ vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications
- UAVs over a stadium \implies extended coverage and surveillance
- Group of drones \implies search-and-rescue missions

S. Evmorfos

Previous methods:

- Assume knowledge of channels statistics → model-based [Kalogerias, Petropulu, IEEE TSP, 2018]
- Relays move in 2 dimensions (Rectangular grid) [Huang, Mo, IEEE WCNC, 2018] [Evmorfos, Petropulu, IEEE TSP, 2022]
- $\textbf{8} Motion of the relays \implies discrete in space$

Our Contributions

- Our approach \implies model-free (no assumptions for channels stats)
- We formulate the problem as a continuous MDP ⇒ motion continuous in space (<u>but</u> discrete in time)
- Randomness of channels \implies stochastic policies
- We propose a soft actor-critic algorithm with Sinusoidal Representation Networks for the critic
- Continuous control \implies necessary for performance and scaling in 3D motion
- Our proposition \implies excellent performance in 2D and 3D motion \implies without additional complexity or retuning

1 Introduction

- **2** Problem Formulation
- 3 Deep Reinforcement Learning for Continuous Control
- Proposed Method
- **5** Experiments
- 6 Conclusions

Scenario

- Network with R mobile relays
- Source S, at position \mathbf{p}_S and Destination D at \mathbf{p}_D
- \mathbf{p}_{S} and \mathbf{p}_{D} can either belong in \mathbb{R}^2 or in \mathbb{R}^3
- $f(\mathbf{p}_i(t), t)$ is the channel from the source to the relay i
- $g(\mathbf{p}_i(t), t)$ is the channel from the relay i to the destination
- The channels exhibit correlations with respect to time and space

LoS communication is <u>not feasible</u>, $\rightarrow R$ relays, each at position $\mathbf{p}_k(t)$

Motion of the relays:

- Time-slotted (time slot denoted as *t*)
- Confined in a 2D plane or 3D cube

During every time slot t, each relay should:

- 1 Optimally beamform to destination (maximize SINR)
- 2 Decide where to move for the next slot

Source S transmits the symbol $s(t) \in \mathbb{C}$ using power $\sqrt{P_S} > 0$ The signal received at the relay located at $\mathbf{p}_k(t)$ is

$$x_k(t) = \sqrt{P} f_k(\mathbf{p}_k, t) s(t) + n_k(t), \tag{1}$$

- f_k : source-relay channel for the k-th relay
- $n_k(t)$: reception noise at the k-th relay, white with variance σ^2

Each relay multiplies the signal, $x_k(t)$, by weight $w_k(t) \in \mathbb{C}$ All R relays transmit the weighted signal simultaneously The signal received at D equals

$$y(t) = \sum_{k=1}^{R} g_k(\mathbf{p}_{\mathsf{D}}, t) w_k(t) x_k(t) + n_{\mathsf{D}}(t),$$
(2)

- g_k : relay-destination channel for the k-th relay
- $n_{\rm D}(t):$ reception noise at the destination, assumed white with variance σ_D^2

Maximum SINR solving w.r.t relay weights, s.t total power constraint:

$$V(t) = \sum_{k=1}^{R} \frac{P_R P_S |f_k(\mathbf{p}_k, t)|^2 |g_k(\mathbf{p}_k, t)|^2}{P_S \sigma_D^2 |f_k(\mathbf{p}_k, t)|^2 + P_R \sigma^2 |g_k(\mathbf{p}_k, t)|^2 + \sigma^2 \sigma_D^2}$$

=
$$\sum_{k=1}^{R} V_I(\mathbf{p}_k, t).$$
 (3)

[Havary-Nassab et al, IEEE TSP, 2008]

- *P_R*: Total power budget of the relays.
- P_S : Total power budget of the Source.

1 Introduction

2 Problem Formulation

3 Deep Reinforcement Learning for Continuous Control

- Proposed Method
- **5** Experiments

6 Conclusions

Reinforcement Learning

Reinforcement Learning (RL) \implies Markov Decision Process(MDP):

The agent, at every time step:

- **1** experiences state s_t .
- **2** chooses action a_t from a continuous set of actions A.
- **3** transitions to the next state s_{t+1} .
- **4** collects reward r_t .
- **5** γ , discount factor: how far-sighted the agent is.

<u>Goal</u>: Learn a **Policy** for choosing actions, to maximize the **expected sum of discounted rewards**:

$$R = \mathbb{E}[\sum_{t=t'}^{T} \gamma^{t'-t} r_{t'}]$$

 $\underline{Previous\ works}$ on relay motion \rightarrow relays move in space in a **discrete** fashion

The drawbacks of discrete control:

- The space needs to be discretized \rightarrow large overhead + unrealistic for real-world deployment
- If motion is considered in the 3D space <u>or</u> better performance is required → finer discretization → curse of dimensionality in Dynamic Programming

For the above reasons, we consider continuous control \to the relays can move continuously in the space of interest

<u>Model-free</u> \implies deep neural nets for function approximation

• Critic (Value Function):

Neural Network: Learns expected sum of rewards from state-action pair (MSE with bootstrapping)

• Actor (Policy Function):

Neural Network: Learns the action that maximizes the expected sum of rewards from given state (policy gradient)

1 Introduction

- **2** Problem Formulation
- 3 Deep Reinforcement Learning for Continuous Control

4 Proposed Method

5 Experiments

6 Conclusions

To employ deep actor-critic we need to formulate an MDP SINR expression is distributed, <u>therefore</u> we construct one MDP-Policy <u>shared</u> by all relays

The MDP:

- state(s): position vector of the relay $s = [x, y, z]^T$ (or $s = [x, y]^T$ for the 2D case)
- action(a): relay displacement vector a = [dx, dy, dz] (or a = [dx, dy] for the 2D case)
- reward(r): relay's contribution to the SINR at destination $V_I(\mathbf{p}_k, t) \equiv V_I(s, t)$
- **discount**(γ): quantification of how far sighted the agent (0.99)

Relay motion \implies continuous in space

But:

- Motion remains discrete w.r.t time
- Clip action to respect space boundaries
- Clip action to avoid collision
- During time displacement interval \implies channels do not change

Additional requirements for adopting deep actor-critic methods for continuous relay control

- Off-policy: The policy learned \implies different than the one generating the data
- Stochastic Policies: Channel randomness \implies stochastic reward

Soft actor-critic (SAC): [Haarnoja, Zhou et al, ICML, 2018]

- Off-policy
- Stochastic policy
- Model-free continuous control

Vanilla SAC: Direct adoption of soft actor-critic for continuous relay motion control \implies <u>ReLU MLPs</u> for approximating actor and critic

Spectral Bias: Inability of ReLU MLPs to capture high frequencies in Iow-dimensional regression [Tancik, Srinivasan et al, NeurIPS, 2020]

Actor-critic instability: if critic estimate is inaccurate \implies policy updates accumulate error \implies suboptimal policy

Vanilla SAC:

- Critic \rightarrow ReLU MLP \rightarrow low-dimensional regression via bootstrapping
- Channels are highly varying \implies underlying Value Function has high frequencies

ReLU MLP for the critic \implies low quality policies

SIRENs

The **Sinusoidal Representation Network (SIREN)** architecture was introduced in [V.Sitzmann, J.Martel et al, 2020, NeurIPS] to tackle the *Spectral Bias* of ReLU MLPs

It constitutes of:

- Dense layers
- Sinusoids as activation functions

The SIREN comes with an initialization scheme to handle the periodicity of the activations between layers:

Figure: SIREN architecture - dense layers with sinusoidal activations

We propose:

- Soft actor-critic to solve the formulated MDP for continuous relay motion control
- **2** SIREN for parameterizing the critic

We denote our proposed method as **SIREN SAC**

1 Introduction

- **2** Problem Formulation
- 3 Deep Reinforcement Learning for Continuous Control
- Proposed Method
- **5** Experiments

6 Conclusions

We simulate channel data based on a known channel model with spatiotemporal correlations [D. Kalogerias, A. Petropulu, TSP, 2018]

The log magnitude of the channel has 3 additive components:

- Pathloss
- Multipath (Gaussian i.i.d)
- Shadowing (correlation w.r.t time and space)

We perform 2 different sets of experiments

- for 2D plane (20^2)
- for 3D cube (20³)

Experiments in 2D

Figure: Average SINR (in db) for 50 episodes (400 slots per episode and 12 different seeds) for the 2D case - 3 relays and 1 source-destination pair

**TD3: The counterpart of soft actor-critic with deterministic policy \implies ReLU MLPs [S.Fujimotto et al, ICML, 2018]

Experiments in 3D

Figure: Average SINR (in db) for 50 episodes (400 slots per episode and 12 different seeds) for the 3D case - 3 relays and 1 source-destination pair

**TD3: The counterpart of soft actor-critic with deterministic policy \implies ReLU MLPs [S.Fujimotto et al, ICML, 2018]

- Every Network (MLP or SIREN) is comprised by 3 layers
- Each layer has 200 neurons
- batch size of 100 experiences
- the size of the Experience Replay is 1e+6
- Adam optimizer with learning rate of 2e-4

<u>2D scenario</u>

 Continuous control ⇒ freedom for relay motion ⇒ better performance than Deep Q Learning with SIREN (discrete) [Evmorfos, Petropulu et al, IEEE TSP, 2022]

<u>3D scenario</u>

 Continuous control ⇒ only viable solution, because discretization induces curse of dimensionality ⇒ Deep Q Learning cannot converge to good policies

- The employment of SIRENs for Value Function approximation provides significant improvement both in SINR and in stability
- The **SIREN SAC** algorithm retains the 2D performance in the 3D case without additional complexity and tuning
- Employing SIRENs for the **TD3** provides no improvement (testament for the necessity of stochastic policies)

1 Introduction

- **2** Problem Formulation
- 3 Deep Reinforcement Learning for Continuous Control
- Proposed Method
- **5** Experiments

Conclusions

- We have posed the problem of relay motion control in a continuous model-free set up
- We have focused on off-policy deep actor-critic methods to keep the sample complexity low, which is critical for real-world deployment
- We have provided intuition on why stochastic policies are more suitable than deterministic policies for the problem and verify this with experiments
- We have proposed an adaptation of the soft actor-critic algorithm with SIRENs for Value Function approximation that provides significant boost in overall performance
- We have validated the need for continuous control for scaling to 3D motion (and for better performance in 2D)
- The proposed variation retains the performance of the 2D scenario on the 3D scenario without need for additional complexity or retuning

- Code for SIREN SAC: https://github.com/SpiliosEv/SoftActorCriticSIREN3D
- Code for Vanilla SAC: https://github.com/SpiliosEv/SoftActorCriticVanilla3D
- Code for **TD3**:

https://github.com/SpiliosEv/TwinDelayed3D

D. Kalogerias, A. Petropulu Spatially Controlled Relay Beamforming IEEE Transactions on Signal Processing, vol. 66, no. 24, pp. 6418-6433, 2018.

 S. Evmorfos, K. Diamantaras, A. Petropulu Reinforcement Learning for Motion Policies in Mobile Relaying Networks

IEEE Transactions on Signal Processing, vol 70., pp. 850-861, 2022.

T Haarnoja, T. Zhou, A. Abbeel, S. Levine

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor

PMLR International Conference Machine Learning, (pp. 1862-1870).

References(2)

- M. Tancik, M. Srinivasan, P. mildenhall, B. Fridovich-Keil, S, Raghavan, N. Singhal, R. Ramamoorthi, J. Barron, R. Ng Fourier Features Let Neural Networks Learn High frequencies in Low Dimensional Domains *NeurIPS p. 7537-7547, 2020.*
- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein Implicit Neural Representations with periodic activations *NeurIPS p. 7462-7473, 2020.*
- S. Fujimoto, H. Van Hoof, D. Meger Addressing function approximation error in actor-critic methods PMLR International Conference Machine Learning, (pp. 1587-1596).

Y.Haung, X. Mo, J.Xu, L.Qiu Y.Zeng Online Maneuver Design for UAV-Enabled NOMA Systems via Reinforcement Learning, *IEEE WCNC, 2020 pp. 1-6.*

V.Havary-Nassab, S.ShahbazPanahi, A.Grami Distributed Beamforming for Relay Networks based on Second-Order Statistics of the Channel State Information *IEEE TSP, 2008 pp. 4306-4316*.

Thank you!