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Introduction

* Infant cryingis a critical signal for
communication and a known
parental stressor.

* Many researchers have tried to
detect crying, and it appears their
models do well [1].

* However, previous models are
typically developed and evaluated
with “clean-lab” data

— Controlled settings

— Short, preparsed segments
containing non-overlapping
individual cry sounds.

First Author | Dataset Features Classifiers Best Performance
Chang Self-recorded Spectrogram CNN 99.83%
(2019) (Crying with TV, Speech,
etc.)
Manikanta Recorded in homes MFCC 1D-CNN 86%
(2019) (Crying with AC, Fan, etc.) FFNN
SVM
Dewi Self-recorded samples LFCC KNN 90%
(2019) Cry and Not Cry
Gu Self-recorded LPC Dynamic time 97.1%
(2018) (Crying with laughter, warping
barking, etc.) algorithm
Ferretti Real Dataset: recorded in Log-Mel Coefficients | DNN Real dataset 86.58%
(2018) the NICU of a hospital. Synthetic DB
Synthetic DB: Crying with 92.92%
speech, “beep” sounds, etc.)
Feier TUT Rare Sound Events log-amplitude mel- CRNN 85% for baby crying
(2017) 2017 spectrogram detection

(Crying with “glass
breaking”, “gunshot”, etc.)

* Thus, their results may not generalize to real-world contexts in which they are most needed

[1]. C.Ji, T. B. Mudiyanselage, Y. Gao, and Y. Pan, “A review of infant cry analysis and classification,” EURASIP Journal on Audio, Speech, and Music Processing, no. 8, 2021.
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Introduction

* Detection and classification in real-world settings is much harder than clean-lab conditions
— E.g. real-world cough [2] and laughter [3] detections
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[2]. D. Liagat, S. Liagat, J. L. Chen, T. Sedaghat, M. Gabel, F. Rudzicz, and E. de Lara, “Coughwatch: Real-world cough detection using smartwatches,” in ICASSP 2021, 2021, pp.8333-8337.
[3]. J. Gillick, W. Deng, K. Ryokai, and D. Bamman, “Robust Laughter Detection in Noisy Environments,” in Proc. Interspeech 2021, 2021, pp. 2481-2485.
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Contribution

 We collected and annotated a real-world infant crying dataset
— https://homebank.talkbank.org/access/Password/deBarbaroCry.html

 We developed a robust crying detection model in real-world
— F1 score: 0.613 (Precision: 0.672, Recall: 0.552)
—  https://github.com/AgnesMayYao/Infant-Crying-Detection

* We concluded that in-lab crying dataset does not generalize to real-world situations
— trained on in-lab, tested on In-lab F1 score: 0.656
— trained on in-lab, tested on real-world F1 score: 0.236


https://homebank.talkbank.org/access/Password/deBarbaroCry.html
https://github.com/AgnesMayYao/Infant-Crying-Detection

©TEXAS

The University of Texas at

Two novel audio datasets

* We collected 780 hours of raw audio data using LENA in real-world home
environments.

* Real world: Filtered Dataset (RW-Filt)

— Filtered using algorithms from LENA software
e Real world: Unfiltered 24h Dataset (RW-24h)
— Unfiltered, randomly sampled audio data for testing only

e Annotation

— At level of crying episodes according to best practices

— Include both fussing and crying vocalizations
— Inter-rater reliability kappa score: 0.85 (strong agreement)

WHAT STARTS HERE CHANGES THE WORLD
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One existing audio dataset

. In lab (IL-CRIED)
CRIED database published by Marschik et al [4]
— Microphones over infants in a cot in a quiet room
— 5587 individual vocalisations from 140 recordings of 20 healthy infants
— Vocalizations: infant neutral/positive, fussing, crying, and overlapping
adult vocalizations
— Re-annotated to match our real-world datasets

In summary, we have three audio datasets

Table 1. Crying Dataset Statistics
Dataset CryHrs TotalHrs N Ages (months)

RW-Filt WA 66 24 1.53-10.8
RW-24h 14.7 408 17 0.78 -7.03
IL-CRIED 1.26 14 20 1-4

[4]. P. Marschik, F. Pokorny, R. Peharz, D. Zhang, J. O’'Muircheartaigh, H. Roeyers, S. B olte, A. Spittle, B. Urlesberger, B. Schuller, L. Poustka, S. Ozonoff, F. Pernkopf, T. Pock, K. Tammimies, C. Enzinger, M. Krieber, I.
Tomantschger, K. Bartl-Pokorny, J. Sigafoos, L. Roche, G. Esposito, M. Gugatschka, K. Nielsen-Saines, C. Einspieler, W. Kaufmann, and The BEE-PRI Study Group, “A novel way to measure and predict development: A
heuristic approach to facilitate the early detection of neurodevelopmental disorders,” Current Neurology and Neuroscience Reports, vol. 17, no. 5, pp. 43, Apr 2017.
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Model development

e Use real-world RW-Filt data to train a set of three models*
— Test the performance on RW-Filt and RW-24h (raw, unfiltered)
— Determine the best performing model
e Use lab-clean IL-CRIED data to train the best performing model
— Test and compare the performance on lab-clean IL-CRIED and real-world RW-24h

Preprocessing
* Training
— 5 second windows (with 4-second overlap)
— Augmentation using time masking deformation technique
* Testing
— Removed all audio segments silent above a 350 Hz threshold
— 5 second windows (with 4-second overlap)

*technically four models -see paper for details
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Crying detection models

e SVM with acoustic features (AF)
— 34 acoustic features
— SVM classifier with RBF kernel Pre-processing Extracting Deep Spectrum Features

Mel-scaled

* End-to-end CNN model (CNN) spectrograms H%

Crying
Not Crying

— Modified AlexNet with mel-scaled
spectrograms as input
 SVM with deep spectrum and acoustic features
(DSF + AF)
— Combination of AF and CNN
— Last hidden layer of CNN (size 1000) used as
deep spectrum features
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Crying detection models

* SVM with acoustic features (AF)
— 34 acoustic features
— SVM classifier with RBF kernel
* End-to-end CNN model (CNN)
— Modified AlexNet with mel-scaled
spectrograms as input
 SVM with deep spectrum and acoustic features

Pre-processing

Mel-scaled

spectrograms
- 1
Raw Audio /

(DSF + AF) Acoust -
— Combination of AF and CNN S -
— Last hidden layer of CNN (size 1000) used as |sv,\;‘c.assiﬁemaﬁing |

deep spectrum features *
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Crying detection models

* SVM with acoustic features (AF)

— 34 acoustic features

— SVM classifier with RBF kernel Pre-processing Extracting Deep Spectrum Features
* End-to-end CNN model (CNN) Mel-sealec H_H>

spectrograms
— Modified AlexNet with mel-scaled HY
spectrograms as input RaWA“°"°/
* SVM with deep spectrum and acoustic features

(DSF + AF) "\ Acoustic Deep Spectrum \

— Combination of AF and CNN - e
— Last hidden layer of CNN (size 1000) used as |sv,\;‘ — |

deep spectrum features *
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Results

Table 2. Infant cry detection performance on both real-world and in-lab dataset, with second-by-second accuracy averaged across participants.

Results on RW-Filt (LOPO) Results on RW-24h
Train on RW-Filt F1 Precision Recall F1 Precision Recall
AF 0.515(£0.185)  0.42(4+0.225) 0.847(4+0.140) 0.502(+0.204) 0.481(+0.239) 0.586(+0.191)
CNN 0.620(£0.182)  0.505(#0.206) 0.873(#0.110) 0.589(4+0.194) 0.642(+0.217) 0.580(%£0.178)
DSF + AF 0.615(4£0.170) 0.521(£0.191)  0.820(£0.147) 0.613(%+0.184) 0.672(£0.219) 0.552(#%0.178)
VGGish 0.574(4+0.204) 0.445(£0.216) 0.936(£0.062) 0.543(+0.204) 0.489(£0.228) 0.652(40.182)
Train on IL-CRIED Results on IL-CRIED (LOPO) Results on RW-24h
DSF + AF 0.656(4+0.191) 0.578(£0.255) 0.808(#0.128) 0.236(+0.122) 0.143(£0.084) 0.851(+0.162)

* DSF + AF is the best performing model for real-world datasets.
* DSF + AF reaches F1 score 0.613 when trained and tested on real-world datasets.

* End-to-end CNN training contributed most substantially to DSF + AF model’s

performance.
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Discussion: real-world vs. in-lab datasets

» Datasets collected in controlled environments do not represent the full complexity of

real-world environments
 Models trained on in-lab data are of limited use in the context of the real-world crying

detection task

* In other work, we tested DSF + AF in assessment scenarios important to
developmental researchers against LENA’s cry classifier
— Our model has substantially higher accuracy metrics (recall, F1, kappa)
— And stronger correlations with human annotations at all timescales tested (24
hours, 1 hour, and 5 minutes) relative to LENA [5].

[5]. M. Micheletti, X. Yao, M. Johnson, and K. de Barbaro, “Validating a Model to Detect Infant Crying from Naturalistic Audio,” Behavior Research Methods (In Review).



