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Transient Performance Analysis of MT-DRLS

We propose a novel clustered multitask diffusion RLS (MT-DRLS) algorithm
over network.
 Further improve the performance of the multitask diffusion LMS (MT-DLMS)
algorithm.

* |ts transient behavior is investigated, in the mean and mean-square sense.

« Simulation results illustrate the significant improvement of the MT-DRLS
over the MT-DLMS, as well as the accuracy of the theoretical findings.

 The diffusion recursive least-squares (DRLS) algorithm and its steady-state
performance were extensively studied in the literature, due to the superior
performance of the RLS compared to the LMS.

* More recently, a transient analysis of DRLS algorithm was presented in [1].

* To the best of our knowledge, the multitask DRLS algorithm has not been
considered so far except in [2], where the transient analysis of DRLS algo-
rithm was not studied.

 This motivates us to derive the clustered MT-DRLS algorithm with adapt-
then-combine (ATC) diffusion strategy.

* Furthermore, analytical models are derived to characterize its transient be-
havior in the mean and mean-square sense.

Clustered MT-DRLS Algorithm

Consider a connected network consisting of K nodes, indexed with k& =
1,..., K. Every node k has access to a random data pair {dy.,,, Xy, }, which

IS assumed to be generated by a linear regression model:
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The unknown optimal weight vector w; are constrained to be identical within
each cluster, namely, w;; = w; for V& € C,. In the context of clustered

multitask networks, the objective is to estimate the unknown vectors {wgq}fle.
By solving two least-squares problems, the proposed MT-DRLS algorithm
with ATC diffusion strategy for clustered multitask networks is given by
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1. Preliminaries
The weight error vectors for node k at instant n are defined respectively as follows:
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Let w,, and w* denote the block weight error vector and the block optimal weight vector:
w, = COl{{;\//'Ln, L ,\7\7‘;(7”} c R wr i COI{WT, . ,W}} c REL

We also introduce the following required K x K block diagonal matrices defined as:
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and the block column vector with individual entries of size . x 1 defined as:
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2. Mean Error Behavior Analysis
By starting with the a priori estimation error e;, ,, = 21, — xg’nv’frk,n_l, we can obtain
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Then, the recursive relation of mean weight error vector is given by
E{w,} = AME{®,} 'E{®, ;) —1Q)E{w, 1} —1AQW
with
E{®,} = \E{®, 1} + R,
I

Q= diag{(®@+0" )1} - (0+0")]®I1,
where O is right-stochastic matrix with the (k, /)-th entry p;s, and R, is the expectation
of matrix R, ., i.e., R, = E{R,, } = bdiag{R, 1, ..., R, x} € REI*IE

3. Mean-Square Error Behavior Analysis

The network transient mean-square deviation (MSD) at time instant n is defined by
MSD,, = tr{Wn}/K.

In order to investigate the mean-square error behavior of MT-DRLS algorithm, our next

aim is to determine the update equation of W,,. For mathematical tractability of analy-
sis, we thus introduce the following necessary approximations:
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After some derivation steps, we finally arrive at the recursion of Wn as follows: References
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with the block diagonal matrix 32, = bdiag{aZlIL, el Uz,KIL}- We can characterize the
transient mean-square errors of clustered MT-DRLS by the above recursive relation.
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We consider a connected network consisting of 14 nodes grouped into 3
clusters as shown in Fig. 1 (Left). The optimal weight vectors to be esti-
mated in each cluster are wj = [0.5196, —0.3667] ", w; = [0.4952, —0.3783] ',
and wi = [0.4951, —0.4079] ', respectively. The variances o7, and o7, are
depicted in Fig. 1 (Right), respectively.
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Fig. 1: Network topology (Left). Input and noise variances (Right).
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Fig. 2: Empirical vs. theoretical network MSD.

 Fig. 2 shows that the clustered MT-DRLS algorithms significantly outper-
forms the counterpart clustered MT-DLMS algorithms in terms of conver-
gence rate, steady-state errors, and parameter estimation accuracy.

* We can also see that the consistent agreement between empirical and the-
oretical MSD curves validates the accuracy and effectiveness of transient
theoretical analysis for clustered MT-DRLS algorithm.

* The good consistency also verified that all the necessary approximations
introduced in the analysis are correct and reasonable.
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