

MUSIC IDENTIFICATION USING BRAIN RESPONSES TO INITIAL SNIPPETS

Pankaj Pandey (IIT Gandhinagar) Gulshan Sharma (IIT Ropar) Dr. Krishna Prasad Miyapuram (IIT Gandhinagar) Dr. Ramanathan Subramanian (U Canberra) Dr. Derek Lomas (TU Delft)

Attributes of Naturalistic Music

- Repetitive Musical Patterns Beat, timber
- Patterns enable effortless song recognition
- Subjectivity of Musical Listening

https://www.ncpamumbai.com/soi/

https://www.inc.com/andrew-griffiths/do-you-want-to-capture-every-audience-you-st and-in-front-of.html

Research Questions

- Is there a significant correlation among a person's neural responses across the duration of a song?
- Are the neural signatures embedded in the initial segments retained throughout the song?
- Are neural signatures associated with a song listener specific or independent?

EEG Datasets

NMED-T

- 20 Participants (Mean Age 23 Years)
- 125 Hz
- 125 Channels
- 10 Naturalistic Songs
- Range : 4.5 5 Minutes

Musin-G

- 20 Participants (Mean Age 23.5 Years)
- 250 Hz
- 128 Channels
- 12 Naturalistic Songs
- Range: 1.5 2 Minutes

Proposed Approach

* Train data consist of initial 3, 5, 10, 20 seconds

Mean Accuracy Participants for Four Training Windows

Subject-wise Performance on 20s of Training Data.

ML-based Intra-Subject Song Prediction

Performance of Frequency Bands

Band	RF	GNB	LDA	SVM	MLP
δ (1-4 Hz)	0.3	0.23	0.34	0.34	0.26
θ (4-8 Hz)	0.29	0.22	0.38	0.36	0.26
α (8-12 Hz)	0.25	0.18	0.37	0.34	0.24
β (12-30 Hz)	0.52	0.39	0.61	0.58	0.44
γ (30-40 Hz)	0.59	0.47	0.65	0.59	0.47
ALL-Bands	0.6	0.41	0.6	0.52	0.38

ML-based Intra-subject Song Prediction

Subject-independent Song Identification

Conclusion

- Small segments capturing initial brain responses enable sufficient learning of EEG signatures in the spectral domain
- Higher frequency bands, namely β and γ neural oscillations provide the most discriminating features.
- For intra-subject song prediction, we achieve a maximum accuracy of 65% using γ features in NMED-T
- The β band achieves 88% accuracy for MUSIN-G.
- Prediction accuracy drops significantly in inter-subject song classification, suggesting a weak correlation in brain responses among subjects.
- Identifying neural correlates underlying naturalistic musical signature irrespective of individual experiences.

Reference

1. Images - [Research Questions : Intra- and Inter-Subject]

Predicting Neural Resonance in Naturalistic Scenarios: A Computational Framework to Establish Neural Marker to Observe Internal and External Entrainment. Pankaj Pandey, Derek Lomas, Krishna Prasad Miyapuram, MindBrainBody Symposium, 2022. (<u>https://www.cbs.mpg.de/1922154/c14_pande</u>)

- 2. NMED-T (https://exhibits.stanford.edu/data/catalog/jn859kj8079)
- 3. Musin-G (https://openneuro.org/datasets/ds003774/versions/1.0.0)

Thank You