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Abstract

Nonnegative matrix factorization (NMF) has been traditionally considered a promising approach for audio source separation. While standard NMF is only suited for single-channel mixtures, extensions to consider multi-channel data have been also
proposed. Among the most popular alternatives, multichannel NMF (MNMF) and further derivations based on constrained spatial covariance models have been successfully employed to separate multi-microphone convolutive mixtures. This letter
proposes a MNMF extension by considering a mixture model with Ray-Space-transformed signals, where magnitude data successfully encodes source locations as frequency-independent linear patterns. We show that the MNMF algorithm can be

L seamlessly adapted to consider Ray-Space-transformed data, providing competitive results with recent state-of-the-art MNMF algorithms in a number of configurations using real recordings. y
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