
Camera Calibration through Camera Projection Loss

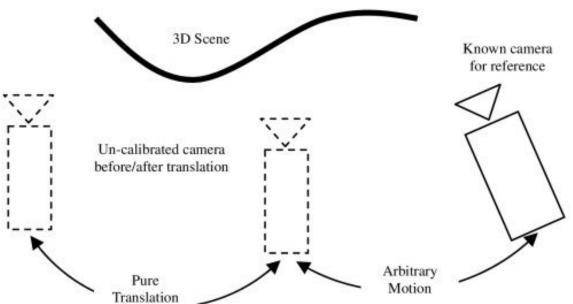
Talha Hanif, Murtaza Taj

Computer Vision and Graphics Lab (CVGL),
Department of Computer Science,
Lahore University of Management Sciences (LUMS)

Motivation

Photogrammetry

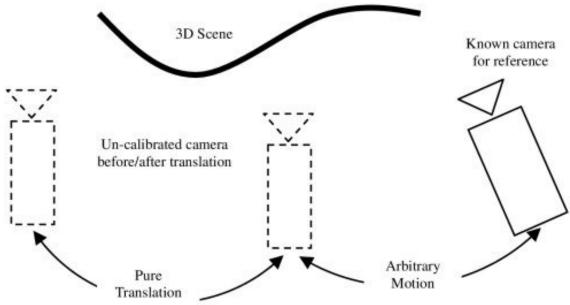
3D Reconstruction

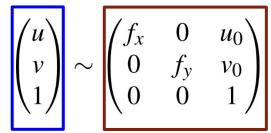


Autonomous Driving

Introduction

Camera Model


- Extrinsic
- Intrinsic



Introduction


Camera Model

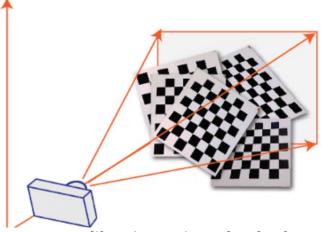
- Extrinsic
- Intrinsic

$$\begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{pmatrix}$$

2D Point

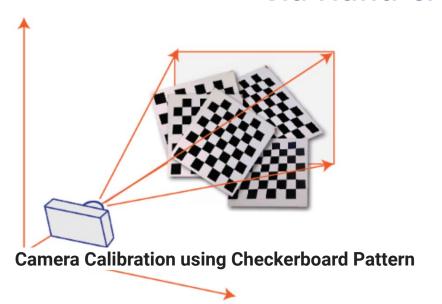
Intrinsic

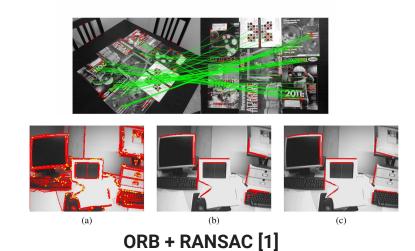
Rotation

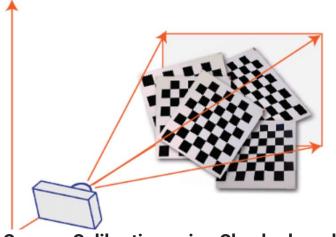

Translation

3D Point

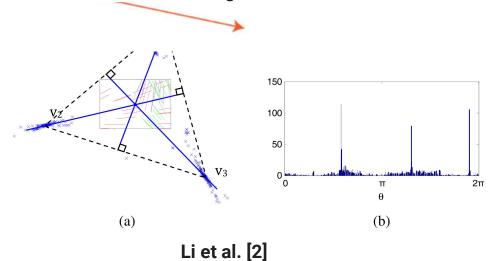
Background Literature

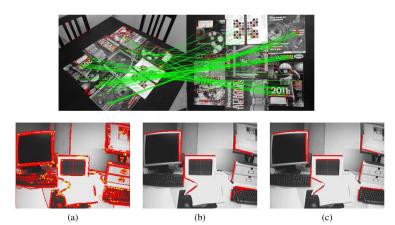

Camera Calibration via Hand-crafted Features


Camera Calibration via Hand-crafted Features


Camera Calibration using Checkerboard Pattern

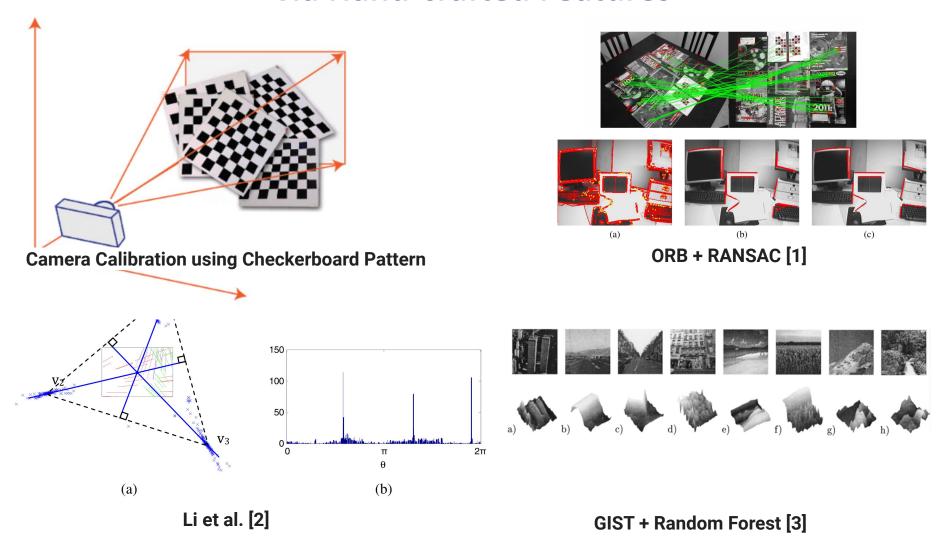
via Hand-crafted Features




via Hand-crafted Features

1.

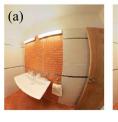
Camera Calibration using Checkerboard Pattern



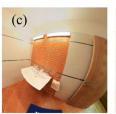
ORB + RANSAC [1]

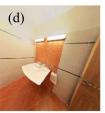
- DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798 (2016).
- Bo Li, Kun Peng, Xianghua Ying, and Hongbin Zha, "Simultaneous vanishing point detection and camera calibration from single images," in ISVC, 2010.

via Hand-crafted Features



- DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798 (2016).
- 2. Bo Li, Kun Peng, Xianghua Ying, and Hongbin Zha, "Simultaneous vanishing point detection and camera calibration from single images," in ISVC, 2010.
- 3. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015.


10


End-to-end learning

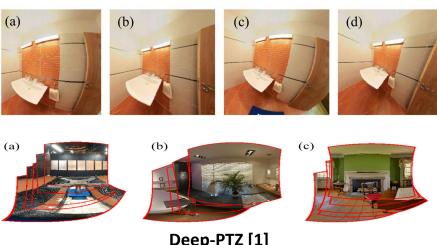
End-to-end learning

Deep-PTZ [1] (focal length, distortion, rotation)

1. Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." *Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2020.

End-to-end learning

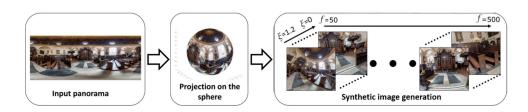
Deep-PTZ [1] (focal length, distortion, rotation)



Deep-Focal [2] (focal length)

^{1.} Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." *Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2020.

^{2.} Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.


End-to-end learning

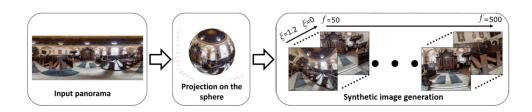
Deep-PTZ [1] (focal length, distortion, rotation)

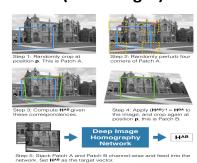
Deep-Focal [2] (focal length)

Deep-Calib [3] (focal length, distortion)

- 1. Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." *Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision*. 2020.
- 2. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.
- 3. Bogdan, Oleksandr, et al. "DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras." *Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production*. 2018.

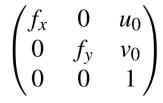
End-to-end learning



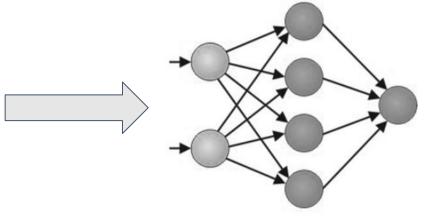

Deep-PTZ [1] (focal length, distortion, rotation)

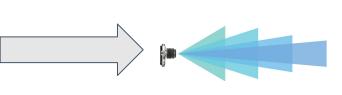
Deep-Calib [3] (focal length, distortion)

Deep-Focal [2] (focal length)

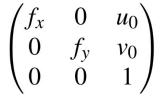

Deep-Homo [4] (homography)

- 1. Zhang, Chaoning, et al. "Deepptz: Deep self-calibration for ptz cameras." Proc. of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.
- 2. Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.
- 3. Bogdan, Oleksandr, et al. "DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras." *Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production*. 2018.
- 4. DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798, 2016.

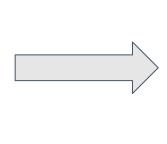

Methodology

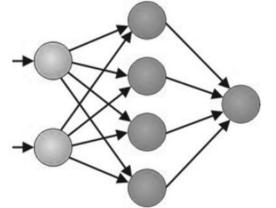

Intrinsic

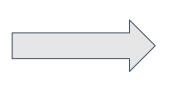
via Single Image

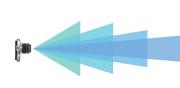


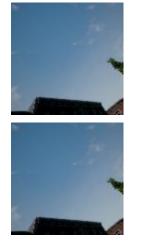


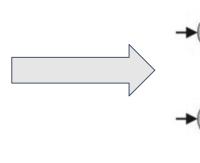


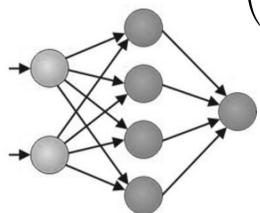

Intrinsic

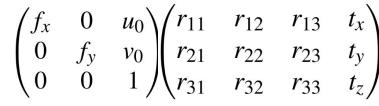

via Single Image

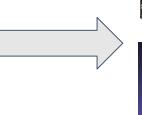


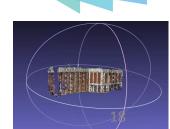


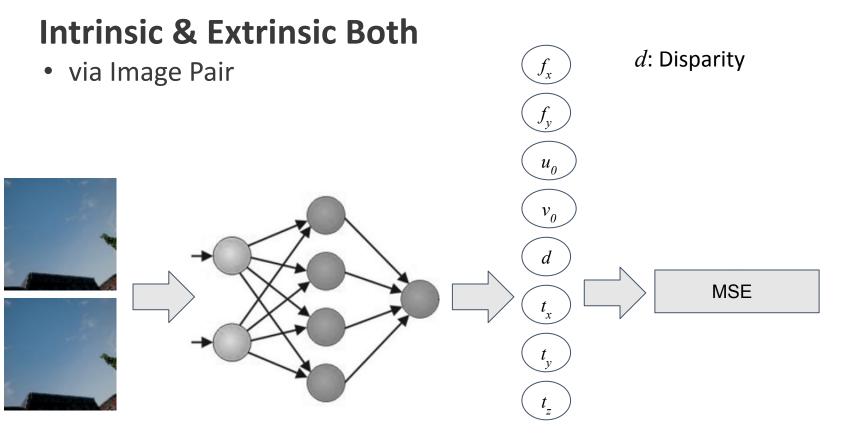




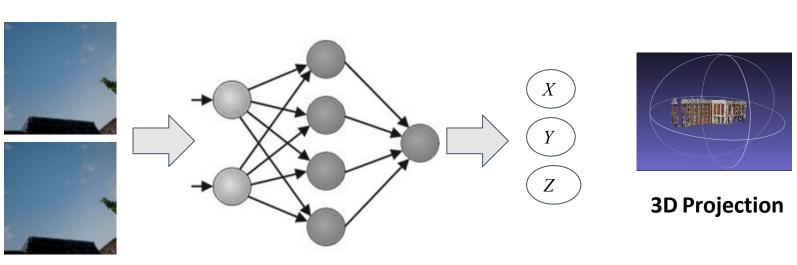

Intrinsic & Extrinsic Both


via Image Pair





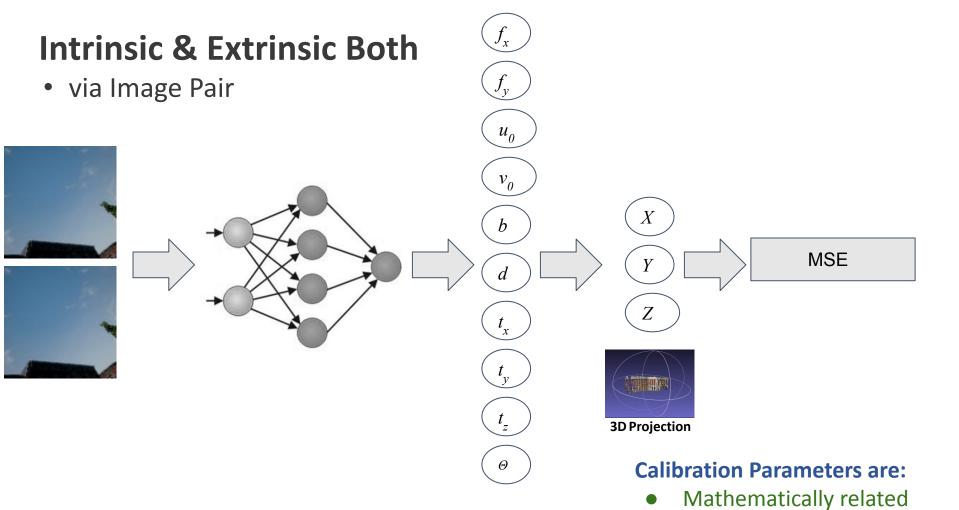
via End-to-end learning


Parameters are:

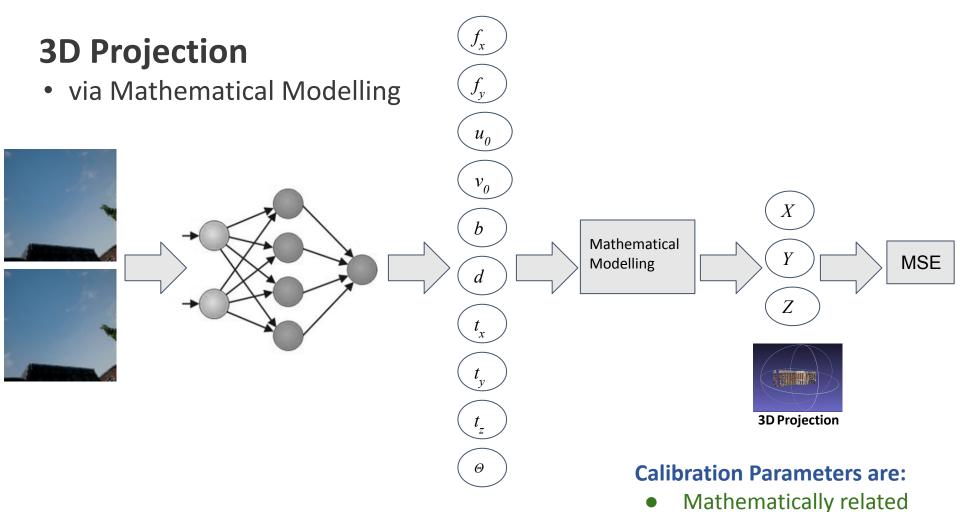
- Mathematically unrelated
- Totally data-driven

3D Projection via End-to-end learning

Intrinsic & Extrinsic Both


via Image Pair

Parameters are:


- Mathematically unrelated
- Totally data-drive

via Camera Projection Loss

data-drive with maths

via Camera Projection Loss

data-drive with maths

via Inverse Projection

Mathematical Modelling

via Image to Camera to World

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \sim \begin{pmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

via Inverse Projection

Mathematical Modelling

via Image to Camera to World

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \sim \begin{pmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

$$egin{pmatrix} X \ Y \ Z \ 1 \end{pmatrix} \sim egin{bmatrix} f_x & 0 & u_0 \ 0 & f_y & v_0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \ r_{21} & r_{22} & r_{23} & t_y \ r_{31} & r_{32} & r_{33} & t_z \end{pmatrix} \end{bmatrix}^{-1} egin{pmatrix} u \ v \ 1 \end{pmatrix}$$

$$egin{pmatrix} X \ Y \ Z \ 1 \end{pmatrix} \sim egin{pmatrix} r_{11} & r_{12} & r_{13} & t_x \ r_{21} & r_{22} & r_{23} & t_y \ r_{31} & r_{32} & r_{33} & t_z \end{pmatrix}^{-1} egin{pmatrix} f_x & 0 & u_0 \ 0 & f_y & v_0 \ 0 & 0 & 1 \end{pmatrix}^{-1} egin{pmatrix} u \ v \ 1 \end{pmatrix}$$

Camera Calibration via Inverse Projection

Mathematical Modelling

• via Image to Camera

$$x_{cam} = f_x * b/d$$

$$y_{cam} = -(x_{cam}/f_x) * (u - u_0)$$

$$z_{cam} = (x_{cam}/f_y) * (v_0 - v)$$

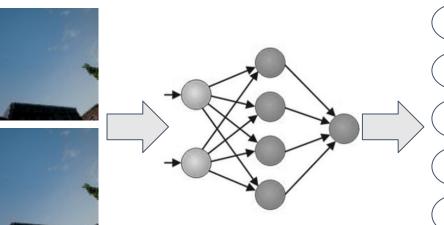
Camera Calibration via Inverse Projection

Mathematical Modelling

via Camera to World

$$egin{pmatrix} X \ Y \ Z \ 1 \end{pmatrix} \sim egin{pmatrix} \mathbf{R} & \mathbf{t} \ \mathbf{0}_{3 imes1}^T & 1 \end{pmatrix} egin{pmatrix} x_{cam} \ y_{cam} \ z_{cam} \ 1 \end{pmatrix}$$

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \sim \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} x_{cam} \\ y_{cam} \\ z_{cam} \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$


$$X = x_{cam} * \cos \theta + z_{cam} * \sin \theta + t_x$$
$$Y = y_{cam} + t_y$$

$$Z = -x_{cam} * \sin \theta + z_{cam} * \cos \theta + t_z$$

via Camera Projection Loss

Mathematical Modelling

via Lambda Layers

Mathematical Modelling

$$x_{cam} = f_x * b/d$$

$$y_{cam} = -(x_{cam}/f_x) * (u - u_0)$$

$$z_{cam} = (x_{cam}/f_y) * (v_0 - v)$$

$$X = x_{cam} * \cos \theta + z_{cam} * \sin \theta + x$$

$$Y = y_{cam} + y$$

$$Z = -x_{cam} * \sin \theta + z_{cam} * \cos \theta + z$$

Results and Evaluation

Datasets

CVGL Camera Calibration Dataset

- Synthetic
- via CARLA Simulator
- 2 Towns
- 49 Camera Configurations
- 79,320 image pairs

Datasets

CVGL Camera Calibration Dataset

- Synthetic
- via CARLA Simulator
- 2 Towns
- 49 Camera Configurations
- 79,320 image pairs

Tsinghua-Daimler Cyclist Detection Benchmark

• 2,914 images comprising of the test set used for evaluation

Quantitative Evaluation

Evaluation on CVGL Camera Calibration Dataset

via Normalized Mean Absolute Error

Method	f_x	f_{y}	u_{o}	v_{θ}	b	d	t_x	t_y	t_z	Θ
Average [1]	0.840	0.786	0.432	0.542	6.552	3.607	6.552	9.372	5.361	0.744
Deep-Homo [2]	0.062	0.062	0.008	0.008	0.156	0.065	0.156	0.161	0.155	0.045
MTL-CPL-U	0.935	0.685	0.892	0.737	0.938	0.432	0.400	0.329	0.432	1.060
MTL-Baseline	0.030	0.029	0.017	0.007	0.057	0.013	0.064	0.076	0.071	0.024
MTL-CPL-A	0.022	0.022	0.004	0.006	0.093	0.007	0.097	0.116	0.098	0.017

^{1.} Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. Deep image homography estimation. arXiv preprint arXiv:1606.03798, 2016.

Quantitative Evaluation

Evaluation on Tsinghua-Daimler Cyclist Detection Benchmark (without any training or transfer learning)

via Normalized Mean Absolute Error

Method	f_{x}	f_y	u_{o}	v_{o}	b	d	$t_{_{X}}$	t_y	t_z	Θ
Average [1]	0.994	0.991	0.969	0.951	112.438	0.492	10.843	271.935	13.798	982.413
Deep-Homo [2]	0.958	0.958	0.946	0.895	9.985	1.233	0.166	27.141	0.862	2746.994
MTL-CPL-U	0.872	0.888	0.782	0.795	0.081	1.271	0.147	23.836	0.635	7700.968
MTL-Baseline	0.957	0.958	0.944	0.893	18.323	1.258	1.035	32.946	0.999	2418.250
MTL-CPL-A	0.938	0.938	0.946	0.895	14.182	1.259	0.727	30.640	1.418	1995.353

^{1.} Workman, Scott, et al. "Deepfocal: A method for direct focal length estimation." 2015 IEEE International Conference on Image Processing. IEEE, 2015.

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Deep image homography estimation." arXiv preprint arXiv:1606.03798, 2016.

Summary & Conclusions

Summary

- A new dataset for Camera Calibration.
- A **new representation** to incorporate camera model equations in a neural network in a multi-task learning framework.
- A new **loss utilizing camera model** neural network to reconstruct 3D projection and uses the reconstruction loss to estimate the camera parameters.
- The proposed method **performs better** than both traditional and learning based methods.

Please come to the poster for further details! Poster Session: IVMSP-36: Camera Calibration and Human Pose Time: Thursday, 12 May, 21:00-21:45 (Singapore Time)

Email: murtaza.taj@lums.edu.pk

<u>l181864@lhr.nu.edu.pk</u>

Project Page: https://cvlab.lums.edu.pk/cpl

GitHub: https://github.com/thanif/CPL

CVG Lab Website: https://cvlab.lums.edu.pk

