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Background
o Motivations Y € RP*™ is the hyperspectral data cube; wherefg(2) is a neural network parameterized by
= Most blind unmixing networks are based on Autoencoder-like structure. E € RP*" is the endmember signature matrix; 6, with a random nput z. After learning, network
= Most network-based blind unmixing methods cannot guarantee to generate physically A € R"*"is the abundance matrix; would output the restored image by x* = fy-(2).
meaningful unmixing results due to the lack of effective guidance!ll. = Goal of BU is to estimate E and A given'Y. * Unmixing using DIP (UnDIP) 3 i
= The performance of most unmixing networks with training guidance is limited by the quality «* DIP techniques(?! = Existing method such as S1VM generate E,
of the guidance. " @Given an nverse problem then (1) reduce to abundance estimation and
* Blind unmixing (BU) problem x* = argmin||x — xg||5 + R(x) can be solved via:
~ A 1 . X . . 1 -
E A= argminE |Y — EA||% + R(A) (1) Where, x, 1s noisy image, R is regulariser. 6* = argming > Hy —Ef, (Z)Hi
E,A

= DIP propose to solve the problem

) | The abundance would be given by A = fo+(Z).
° = argminllfy(z) — %ol svenby A= Jo

s.t.,E=>0A4>0A4T1, =1,
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Methods

o . . . R 1 _ o .
* ]ér}dmember estimation via DIP (EDIP) 8y = argmin= ||y — £, (z4) HZ _ CEDIP Loss * We aloso Propose a new composite loss
" (Given an estimation of abundance A, (1) reduce to 64 2 ) F — | v _ BAJ2 function:
Endmember estimation problem, which can be solved using The abundance would be given by A = f3 (24). < N B : L=aLgpp + ayLipip + azlpy
a DIP: ¢ Overall structure s where,
R 1 D . ~ A : 3 N UDIFP Loss 1 2
§, = argmin— HY — o (zp) AH After obtalnlng E and A, using EDIP and ADIP X+ (3 |’ e Linip = = HY ~ fo.(25) AH
Or 2 E F 2 F
E ~ respectively, we can generate a reconstruction of : 1 ,
The endmember would be given by E = f5_(zg). HSI image as follows: o 4DIP |_a Lapip =~ IY — Efg,(za)||,
¢ Abundance estimation via DIP (EDIP) Y =EA 0.4 | AENE 08 1 2
= Given an estimation of endmember E, (1) reduce to Thus, the overall structure of the proposed 3 1Y = Ball o Lpu = 2 IY - Y”F
abundance estimation problem, which can be solved using network, named BUDDIP, 1s obtained by | (E , A) 1s the guidance generated by existing
a DIP: assembling EDIP and ADIP, as shown in Fig.1. Fig.1 BUDDIP methods such as SIVM+FCLS.
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** Experiment on synthetic data > Performance vs. SNR > Performance vs. training size ** Experiment on Real data
= We use the procedure in [4] to generate a synthetic HSI . . . =  We use the Jasper Ridge Dataset, and the default setting except
. ¢ P 100 x 100 '.] 1 S y We use default setting except SNR We use default setting except training P 10 S q b ’24000 S P
1mage of size X pixels. . . . . a1 = a, = a; = 1.0 and epoch= .
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E OCh 4500 (a) aRMSE vs. SNR (b) aSAD vs. SNR | | | | While dot line is estimated value.
P . (a) aBRMSE vs. 1Mage S12C (b) aSAD vs. 1mage s1z¢ Table 1. Unmixing performance by Different Algorithms.
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