2022 IEEE International Conference on Acoustics, Speech and Signal Processing

Universal Efficient Variable-rate Neural Image Compression

Shanzhi Yin, Chao Li, Youneng Bao, Yongsheng Liang, Fanyang Meng, Wei Liu

Harbin Institute of Technology, Shenzhen & PengCheng Laboratory

1. Introduction

- Image compression is a fundamental technology in signal processing and computer vision.
- In recent years, many learning-based image compression methods have achieved state-of-the-art performance comparing to traditional image codecs.
- However, there are still some challenges for its **practical deployment**:
 - Bit-rate and reconstruction quality are fixed for a single trained model with a predefined trade-off factor.
 - Computational cost in learning-based compression models is relatively high due to their complex network architectures.

To deal with such situation and corresponding challenges of learning-based image compression, this paper proposes a **universal variable-rate efficient** method for neural image compression.

2. Method

Overall Framework

Two novel modules are purposed——Energy-based channel gating module(ECG) and Bit-rate modulator(BM).

- **ECG** embedded before each convolution layers to get sparse convolutional inputs.
 - **BM** inserted outside entropy coding process to modulate the latent representation.
 - **Comprehensive** optimization formulation:

$$\underset{\theta,\phi,\xi,\lambda}{\operatorname{argmin}} \sum_{\lambda \in \Lambda} [R + \lambda D + \gamma \sum_{i=1}^{n} (\alpha_n - \alpha_t)^2]$$

2. Method

Energy-based channel gating

Bit-rate modulator

icassp

- different influence on the results \rightarrow learnable dynamic feature map pruning with channel-wise threshold.
- Global pooling intra-channel for ٠ information
- 1D-convolution inter-channel for • information

- Mapping a trade-off factor λ into a vector
- Simple: Two full-connected layer
- Effective: Plug-in manner

3. Experiments

We use ScaleHyperprior model as an example to show the implementation details and optimization strategies of our method.

Distortion: mean square error measured on the test set

$$D(x, \hat{x}; \theta, \phi, \xi, \lambda) = \mathbb{E}_{x \sim p_x}[||x - \hat{x}||^2]$$

Rate: cross entropy of the estimated distribution of y and the its actual distribution

$$R(\hat{y};\theta,\phi,\xi,\lambda) = \mathbb{E}_{\hat{y}\sim p_y}\{log_2q_y[Q(y\odot bm(\lambda))]\}$$

In ECG, the **learnable adjustment vector** α affect the final gating threshold *th*, **larger** the α is, **higher** the final threshold on each channels will be, and the output feature map of ECG will be **sparser**.

Final optimization formulation:

$$\underset{\theta,\phi,\xi,\lambda}{\operatorname{argmin}} \sum_{\lambda \in \Lambda} [R + \lambda D + \gamma \sum_{i=1}^{n} (\alpha_n - \alpha_t)^2$$

3. Experiments

Model	Performance	Quality							
		1	2	3	4	5	6	7	8
ScaleHyperprior	PSNR drop(%)	0	0.346	0.228	0.269	0.336	0	0	0.216
	FLOP reduction	2.54 ×	2.86 ×	2.60 ×	2.54 ×	2.54 ×	2.07 ×	2.14 ×	2.03 ×
MeanscaleHyperprior	PSNR drop(%)	0.39	0.22	0.77	0.69	0.37	0.61	0.71	0.78
	FLOP reduction	2.34 ×	2.50×	2.56 ×	2.68 ×	2.33 ×	2.12 ×	2.12 ×	2.24 ×
JointAutoregressive	PSNR drop(%)	0.207	0.335	0.437	0.807	0.465	0.150	0.354	0.553
	FLOP reduction	2.43 ×	2.67 ×	2.48 ×	2.23 ×	2.29 ×	2.02×	2.06 ×	2.02 ×

For model with ECG: We can see that the FLOP reduction of more than $2 \times$ can be achieved in three neural image compression models with very slight PSNR degradation around 0.5% and no more than 1%

For efficient models: Comparable performance to original models. Sparsity around 0.5 in convolution operations Storage saving of 80.42%,82.04% and 83.07% respectively.

(icassp 2022 Singapore

For models with BM: continuous rate flexibility can be achieved.

2022 IEEE International Conference on Acoustics, Speech and Signal Processing

Thank you!

Harbin Institute of Technology, Shenzhen & PengCheng Laboratory

