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MOTIVATION

Tracking of dynamic systems is encountered in many
applications: Localization, Navigation, Task Planning, etc.
Such settings can often be represented as smoothing tasks,
which are typically tackled using either a Model-Based(MB)
or a Data-Driven(DD) method.

In this work we aim to design a hybrid MB DD smoother.

Key idea: replace part of the MB computation by NN, in order
to incorporate the advantages of both domains.

PROBLEM FORMULATION

Consider fixed-interval smoothing: the recovery of a state
block {xt}Tt=1 given a block of noisy observations {yt}Tt=1 for
a fixed length T . The state and the observations are related
via a dynamical system represented by

xt = f (xt−1) + et, et ∼ N (0,Q) , xt ∈ Òm, (1a)
yt = h (xt) + vt, vt ∼ N (0,R) , yt ∈ Òn. (1b)

In (1), f (·) and h (·) are (possibly) non-linear functions,
while et and vt are Gaussian noise signals with covariance
matrices Q and R, respectively.

TRADITIONAL APPROACH

Solution:
I Linear case: Rauch-Tung-Striebel (RTS) Smoother

achieves the optimal MMSE for linear State Space model
I Non-linear case: linear approximations of f(·) and h(·)

through Jacobian matrices, or heuristic methods like par-
ticle smoothing

Drawbacks:
I Require full knowledge of the underlying model and is

notably degraded in the presence of model mismatch
I limited accuracy in highly non-linear setups

RTSNET - OUR APPROACH

The basic design idea of RTSNet is to utilize the structure
of the model-based RTS smoother and to replace modules
depending on unavailable domain knowledge with trainable
Recurrent Neural Networks (RNNs).

I NN-aided Kalman Gains compensate for model mis-
match

I Avoid linearization and is less sensitive to non-linearities
I Not require inverting matrices while inferring rapidly with

low computation complexity due to efficient RNNs
I Can be extended to carry out multiple passes via deep
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RTSNet architecture

EXPERIMENTS

Linear case:
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Highly non-linear Lorenz Attractor case:
True (Decimated) Noisy Observation

RTSNet Benchmark

Extended Kalman
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