UNROLLING PARTICLES: UNSUPERVISED LEARNING OF SAMPLING DISTRIBUTIONS

Fernando Gama, Nicolas Zilberstein, Richard G. Baraniuk and Santiago Segarra

Nonlinear Dynamical Systems

Department of Electrical and Computer Engineering, Rice University, Houston, TX

Schematic for Learning the Sampling Distribution

Linear System with Gaussian Noise

» The time evolution of some phenomena under study
= Depends nonlinearly on previous states

Tracking Robotics Communications

» Estimate some unknown quantity dependent on the state of the system
= No access to the state, we have access only to observations

Particle Filtering

» We know the distributions = System transition, measurements
—=- Bayesian framework =- Estimate of the state given the observations

» Computing the Bayesian estimate can be computationally intractable
» Particle filtering =- Efficient sampling from a designed distribution
= Average samples to construct an estimator that is good enough

Unrolling Particles

» Designing an efficient sampling distribution that leads to good
= |t is difficult = Balance the model with sampling efficiency
= Avoid weight degeneracy in the resulting sampled particles

Objective

Learn an efficient sampling distribution based only on observations

» Leverage algorithm unrolling to learn a parametric distribution

» Neural networks to learn the mean and variance of a multivariate normal

» Train the neural networks using an unsupervised learning approach
= Minimize weight degeneracy

Nonlinear Dynamical Systems

» Let {X;}+~0 be a sequence of states x; € RV = Unobservable
» Let {y:}+~0 be a sequence of measurements y; € RY — Observable

» The nonlinear dynamic system is completely characterized by

Initial state: xo ~ p(xp) , Transition: p(x¢/x;—1) , Measurement: p(y;|x;)

X
Xt 1 P(X¢|X¢—1) : P(YeX¢) Yt
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Particle Filtering

» The objective is to estimate some function f; of the states
=- We only access observations

» Computing the posterior p(Xo.¢|Yo:¢) is typically intractable
= Use particle filtering

= Estimate the function by sampling {xg’f}},’f:1 ~ 7(Xo:¢t|Yo:t)

K
o= w f(xg})
k=1

» Design m(Xo:¢|Yo.:) = Good estimates, easy to sample
= Assume sequential sampling

7(Xo:¢t|Yo:t) = m(Xo:t—1|Yo::—1)7(X¢|X0:t-1, Yo:t)

» Now the weights can be updated sequentially =- All known quantities
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» Sequential sampling distributions = particle degeneracy
= Most weights Wfk) — 0 except for one
= Minimize it with 7(x;x%) . yo.) = p(x:|x{¥). y;)

» Cannot be avoided = Resampling
= Estimate effective sample size, keep the largest ones

Learning the Sampling Distribution

» A good sampling distribution may depend only on x;_1 and y;

7(X¢|Xo0:t-1, Yo:t) = 7T(X¢|Xi-1, Y¢)

» We propose a multivariate normal distribution =- Easy to sample

T(X¢|Xt—1, Y1) = N(Mt(xt—1 ,Yt), Le(Xe—1, yt))

» We use algorithm unrolling for learning the mean and the variance

Learning the Mean Numerical Experiments

» Algorithm unrolling = We use a neural network for every time iteration
NNY(Xi—1, Y1) = sz") where zgg) = pt(Agg)zg—” )

= For every t there is a different neural network
= L; layers and nonlinearity p;

— Each layer is determined by N! = A!" of size N\ x N~
» The input is given by the concatenation of X;_1 and y;
0
2" = [x_1.y]]" € RN

» The learned mean is collected at the end of the last layer

= It has size szL") = N = The same size as X;

» The values of L;, p; and fo) are all design choices = Hyperparameters

Learning the Covariance

» We learn the covariance matrix with a time-invariant framework
i(Xe_1, Y1) = Z(X¢_1,Yt) = CD(X;_1,y:)C'
» Here, the N x N matrix D(X;_1,Yy;) represents the gaussian kernel
D(X¢-1,Y1)] j o XP (= ([zdi — [24))°)

= It is applied on the output of a neural network
= We learn an appropriate representation

z; = NN*(X;_1,Y¢)

» The N x N matrix C is also learned
— Learn different covariance directions

» Sampling distribution for each time t and for each sample k
= The neural network for the mean NN} has time-varying parameters
— The NN for the covariance NN* has the same parameters for all ¢

= The output u; and X; changes with time because the input (y;, xfﬂ)
changes with time
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Unsupervised Learning

» Unsupervised learning
= We only have access to the sequence of observations {y;}
= Does not require access to the true trajectories {x;} of the system
= Allows the sampling distribution to generalize to unseen trajectories

» Learn a distribution such that the weights are similar to each other

Ul (K)\ m o (K)o (K)
X X X
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= The function J is maximized when all the weights are equal to 1/K
= When weights Wﬁk) get too small, they are penalized by the logarithm
= Reduced benefit for increasing a weight that is already large

» Maximizing J can be done via a stochastic gradient ascent algorithm
— Gradients are propagated via the reparametrization trick

» Given a sequence of measurements {y;} from some dynamical system
— Estimate E[X;|Yo.]

» Three experimental scenarios to illustrate three different aspects
> A linear system with Gaussian noise
— Posterior is known and estimator obtained in closed form
> A nonlinear system with Gaussian noise
= Minimum degeneracy distribution can be obtained
> A linear system with non-Gaussian noise
=- Neither the posterior nor the minimum degeneracy

» The learned distribution is compared with the minimum degeneracy one
= Try with and without resampling (only at test time, not at training time)

Numerical Experiments: Setting

v

Set L; = 2 layers and nonlinearity p; = tanh
> Set N,f” — 256 and N§2) =512 for all ¢

» Train by running the particle filtering, computing the loss
= Using ADAM with learning rate 0.001
» The number of particles simulated on each runis K =25
» The particle filter is run 200 times, updating the parameters each time

» Test by running the particle filters 100 times, drawing K = 25 particles
» Compute the relative RMSE between the estimate and the target value
» Set Kines = K /3 as the threshold for resampling during test time

» Run the entire training and testing for 10 times,
— Report median and standard deviation

» N = 10 size of the state, M = 8 number of measurements
» A adjacency matrix, SNR = || u°[|5/|1Zv]/5

Xt = AXi_1 +V: , Y= CX;+ Wy,
Xp ~ N(ll’oa ZO) ) Vi~ N(Oa ZV) 9 W; ~ N(Oa ZW)a

Ea

N

=

o

Gé 0.1‘E

R

~ I =4-- MinDeg w/R

_ —&— Learned
—f— Learned w/R
0.01 — -

Nonlinear System with Gaussian Noise

» N = 10 size of the state, M = 8 number of measurements
» ¢ absolute value, SNR = HHOHE/HZng

Xt = p(AX¢—1) + Vi, , Yt =Cx¢+wy,
Xp ~ N(ll’oa ZO) ) Vi~ N(Oa ZV) 9 W; ~ N(07 ZW)a
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Linear System with Uniform Noise

» Linear system with linear measurements
=- The initial state and the noise are uniform
— The noise samples are i.i.d. with covariance matrix given by ¥ = o2l
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Conclusions

» Learning sampling distributions for particle filters
=- Algorithm unrolling for learning a multivariate normal

» Train in unsupervised learning framework

=- Requires access only to the sequence of measurements

= Does not require access to the true trajectories of the system

=- Allows the sampling distribution to generalize to unseen trajectories
» Train to minimize degeneracy by maximizing a logarithm of the weights

» Numerical experiments showcase improved performance
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