
UNROLLING PARTICLES: UNSUPERVISED LEARNING OF SAMPLING DISTRIBUTIONS
Fernando Gama, Nicolas Zilberstein, Richard G. Baraniuk and Santiago Segarra

Department of Electrical and Computer Engineering, Rice University, Houston, TX

Nonlinear Dynamical Systems

I The time evolution of some phenomena under study
⇒ Depends nonlinearly on previous states

Tracking Robotics Communications

I Estimate some unknown quantity dependent on the state of the system
⇒ No access to the state, we have access only to observations

Particle Filtering

I We know the distributions ⇒ System transition, measurements
⇒ Bayesian framework ⇒ Estimate of the state given the observations

I Computing the Bayesian estimate can be computationally intractable
I Particle filtering ⇒ Efficient sampling from a designed distribution
⇒ Average samples to construct an estimator that is good enough

Unrolling Particles

I Designing an efficient sampling distribution that leads to good
⇒ It is difficult ⇒ Balance the model with sampling efficiency
⇒ Avoid weight degeneracy in the resulting sampled particles

[Doucet et al, 2000; Djurić et al, 2003; Godsill, 2019; ur Rehman et al, 2018; Ryu and Boyd, 2015; Elvira and Martino, 2021]

Objective

Learn an efficient sampling distribution based only on observations

I Leverage algorithm unrolling to learn a parametric distribution
I Neural networks to learn the mean and variance of a multivariate normal
I Train the neural networks using an unsupervised learning approach
⇒ Minimize weight degeneracy

Nonlinear Dynamical Systems

I Let {xt}t≥0 be a sequence of states xt ∈ RN ⇒ Unobservable
I Let {yt}t≥0 be a sequence of measurements yt ∈ RM ⇒ Observable

I The nonlinear dynamic system is completely characterized by
(which are considered known)

Initial state: x0 ∼ p(x0) , Transition: p(xt |xt−1) , Measurement: p(yt |xt)

xt−1 p(xt |xt−1) p(yt |xt) yt
xt

References

I A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Stat. Comput., vol. 10, no. 3,
pp. 197?208, July 2000.

I V. Elvira, L. Martino, M. F. Bugallo, and P. Djurić, “Eluci- dating the
auxiliary particle filter via multiple importance sam- pling,” IEEE Signal
Process. Mag., vol. 36, no. 6, pp. 145?152, 30 Oct. 2019, lecture notes.

I V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Inter- pretable,
efficient deep learning for signal and image process- ing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18?44, March 2021.

Particle Filtering

I The objective is to estimate some function ft of the states
⇒We only access observations

I Computing the posterior p(x0:t |y0:t) is typically intractable
⇒ Use particle filtering
⇒ Estimate the function by sampling {x(k)

0:t }K
k=1 ∼ π(x0:t |y0:t)

f̂t =
K∑

k=1

w (k)
t ft(x

(k)
0:t)

I Design π(x0:t |y0:t) ⇒ Good estimates, easy to sample
⇒ Assume sequential sampling

π(x0:t |y0:t) = π(x0:t−1|y0:t−1)π(xt |x0:t−1,y0:t)

I Now the weights can be updated sequentially ⇒ All known quantities
⇒ Normalize for computing f̂t

w̃ (k)
t = w̃ (k)

t−1
p(yt |x(k)

t)p(x(k)
t |x

(k)
t−1)

π(x(k)
t |x

(k)
0:t−1,yt)

, w (k)
t =

w̃ (k)
t∑K

k=0 w̃ (k)
t

I Sequential sampling distributions ⇒ particle degeneracy
⇒ Most weights w (k)

t → 0 except for one
⇒ Minimize it with π(xt |x(k)

0:t−1,y0:t) = p(xt |x(k)
t−1,yt)

I Cannot be avoided ⇒ Resampling
⇒ Estimate effective sample size, keep the largest ones

Learning the Sampling Distribution

I A good sampling distribution may depend only on xt−1 and yt

π(xt |x0:t−1,y0:t) = π(xt |xt−1,yt)

I We propose a multivariate normal distribution ⇒ Easy to sample

π(xt |xt−1,yt) = N
(
µt(xt−1,yt),Σt(xt−1,yt)

)
I We use algorithm unrolling for learning the mean and the variance

Learning the Mean

I Algorithm unrolling ⇒We use a neural network for every time iteration

NNµ
t (xt−1,yt) = z(Lt)

t where z(`)
t = ρt

(
A(`)

t z(`−1)
t +b(`)

t

)
⇒ For every t there is a different neural network
⇒ Lt layers and nonlinearity ρt

⇒ Each layer is determined by N`
t ⇒ A(`)

t of size N(`)
t × N(`−1)

t

I The input is given by the concatenation of xt−1 and yt

z(0)
t = [xT

t−1,y
T
t]T ∈ RN+M

I The learned mean is collected at the end of the last layer
⇒ It has size N(Lt)

t = N ⇒ The same size as xt

I The values of Lt , ρt and N(`)
t are all design choices ⇒ Hyperparameters

Learning the Covariance

I We learn the covariance matrix with a time-invariant framework

Σt(xt−1,yt) = Σ(xt−1,yt) = CD(xt−1,yt)CT

I Here, the N × N matrix D(xt−1,yt) represents the gaussian kernel[
D(xt−1,yt)

]
ij = exp

(
− ([zt]i − [zt]j)

2)
⇒ It is applied on the output of a neural network
⇒We learn an appropriate representation

zt = NNΣ(xt−1,yt)

I The N × N matrix C is also learned
⇒ Learn different covariance directions

Schematic for Learning the Sampling Distribution

I Sampling distribution for each time t and for each sample k
⇒ The neural network for the mean NNµ

t has time-varying parameters
⇒ The NN for the covariance NNΣ has the same parameters for all t
⇒ The output µt and Σt changes with time because the input (yt ,x

(k)
t−1)

changes with time

NNµ
t

NNΣ
Gaussian kernel,
multiply with C

N (µt ,Σt)

yt

x(k)
t−1

zt

µt

Σt

x(k)
t

yt+1

Unsupervised Learning

I Unsupervised learning
⇒We only have access to the sequence of observations {yt}
⇒ Does not require access to the true trajectories {xt} of the system
⇒ Allows the sampling distribution to generalize to unseen trajectories

I Learn a distribution such that the weights are similar to each other

J
(
{w (k)

t }t ,k
)

=
T−1∑
t=0

K∑
k=1

log
(
w (k)

t

)
with w̃ (k)

t = w̃ (k)
t−1

p(yt |x(k)
t)p(x(k)

t |x
(k)
t−1)

π(x(k)
t |x

(k)
0:t−1,yt)

⇒ The function J is maximized when all the weights are equal to 1/K
⇒When weights w (k)

t get too small, they are penalized by the logarithm
⇒ Reduced benefit for increasing a weight that is already large

I Maximizing J can be done via a stochastic gradient ascent algorithm
⇒ Gradients are propagated via the reparametrization trick

Numerical Experiments

I Given a sequence of measurements {yt} from some dynamical system
⇒ Estimate E[xt |y0:t]

I Three experimental scenarios to illustrate three different aspects
. A linear system with Gaussian noise
⇒ Posterior is known and estimator obtained in closed form

. A nonlinear system with Gaussian noise
⇒ Minimum degeneracy distribution can be obtained

. A linear system with non-Gaussian noise
⇒ Neither the posterior nor the minimum degeneracy

I The learned distribution is compared with the minimum degeneracy one
⇒ Try with and without resampling (only at test time, not at training time)

Numerical Experiments: Setting

I Set Lt = 2 layers and nonlinearity ρt = tanh

I Set N(1)
t = 256 and N(2)

t = 512 for all t

I Train by running the particle filtering, computing the loss
⇒ Using ADAM with learning rate 0.001

I The number of particles simulated on each run is K = 25
I The particle filter is run 200 times, updating the parameters each time

I Test by running the particle filters 100 times, drawing K = 25 particles
I Compute the relative RMSE between the estimate and the target value
I Set Kthres = K/3 as the threshold for resampling during test time

I Run the entire training and testing for 10 times,
⇒ Report median and standard deviation

Linear System with Gaussian Noise

I N = 10 size of the state, M = 8 number of measurements
I A adjacency matrix, SNR = ‖µ0‖2

2/‖Σv‖2
2

xt = Axt−1 + vt , yt = Cxt + wt ,

x0 ∼ N (µ0,Σ0) , vt ∼ N (0,Σv) , wt ∼ N (0,Σw),

0 2 4 6 8 10

SNR [dB]

0.01

0.1

1

R
el

at
iv

e
R

M
S

E

LLN

MinDeg

MinDeg w/R

Learned

Learned w/R

Nonlinear System with Gaussian Noise

I N = 10 size of the state, M = 8 number of measurements
I φ absolute value, SNR = ‖µ0‖2

2/‖Σv‖2
2

xt = φ(Axt−1) + vt , , yt = Cxt + wt ,

x0 ∼ N (µ0,Σ0) , vt ∼ N (0,Σv) , wt ∼ N (0,Σw),

0 2 4 6 8 10

SNR [dB]

0.1

1

R
el

at
iv

e
R

M
S

E

MinDeg

MinDeg w/R

Learned

Learned w/R

Linear System with Uniform Noise

I Linear system with linear measurements
⇒ The initial state and the noise are uniform
⇒ The noise samples are i.i.d. with covariance matrix given by Σ = σ2I

0 2 4 6 8 10

SNR [dB]

0.1

1

R
el

at
iv

e
R

M
S

E

MinDeg

MinDeg w/R

Learned

Learned w/R

Conclusions

I Learning sampling distributions for particle filters
⇒ Algorithm unrolling for learning a multivariate normal

I Train in unsupervised learning framework
⇒ Requires access only to the sequence of measurements
⇒ Does not require access to the true trajectories of the system
⇒ Allows the sampling distribution to generalize to unseen trajectories

I Train to minimize degeneracy by maximizing a logarithm of the weights

I Numerical experiments showcase improved performance

fgama@rice.edu 47th International Conference on Acoustics, Speech and Signal Processing (ICASSP ’22) May 22–27, 2022

