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Abstract

The automatic detection of abnormal events in surveillance videos with weak

supervision has been formulated as a multiple instance learning task, which

aims to localize the clips containing abnormal events temporally with the

video-level labels. However, most existing methods rely on the features

extracted by the pre-trained action recognition models, which are not dis-

criminative enough for video anomaly detection. In this work, we propose a

spatial-temporal attention mechanism to learn inter- and intra-correlations of

video clips, and the boosted features are encouraged to be task-specific via

the mutual cosine embedding loss. Experimental results on standard bench-

marks demonstrate the effectiveness of the spatial-temporal attention, and

our method achieves superior performance to the state-of-the-art methods.

Introduction

Video anomaly detection (VAD) aims to detect abnormal events in surveil-

lance videos. Since abnormal events are rare and diverse, it is almost impos-

sible to collect and label all kinds of anomalies for modeling. Therefore, most

of the existing methods formulate VAD as an unsupervised or a weakly su-

pervised task. Unsupervised methods use normal samples to learn a model

of ’normality’, and the anomaly is detected by measuring its deviation to the

learned model. Due to the lack of observation of abnormal events, the unsu-

pervised models may not learn the essential difference between normal and

anomaly. In contrast, the weakly supervised VAD (ws-VAD) detects anoma-

lies by comparing the normal and abnormal clips with the video-level labels.

The ws-VAD has been formulated as a multiple instance learning task, which

uses the easy-to-obtain video-level labels to localize the abnormal clips. Sul-

tani et al. [1] firstly proposed a MIL ranking model. The objective is that

the maximum score of clips from an abnormal video should be greater than

that of a normal video. Most of the existing methods directly use the spatial-

temporal features extracted by the pre-trained models. However, the fea-

tures extracted by the pre-trained models are not discriminative enough to

distinguish normal and abnormal events. In addition, previous works always

treat the video clips cut from the same video as independent instances, ig-

noring the inter-connections between adjacent video clips.

To obtain the task-specific spatial-temporal features, we propose spatial-

temporal attention (STA) to explore the inter- and intra-correlations be-

tween video clips. The STAmodule can capture the global contextual spatial-

temporal correlations through a recurrent crisscross attention operation.

Contributions

We propose spatial-temporal attention to obtain task-specific features

for ws-VAD. The global spatial-temporal correlations of all video clips

can be captured via the easy-to-plugin recurrent attention operations.

We propose an STA augmented multiple instance ranking model and

introduce a mutual cosine loss to encourage the model to learn the

prototypical patterns of normal events.

Experimental results on three standard benchmarks demonstrate the

effectiveness of the STA, and our model outperforms the

state-of-the-art methods on the UCF-crime dataset.

Methods
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The architecture of the STA augmented MIL ranking framework is shown in the Figure above. We apply the well-trained

3D convolution model as feature extractor and feed features into the STA module to capture the global spatial-temporal

correlations through a recurrent criss-cross attention. The bd-RNN based regression model output the anomaly score directly.

Spatial-temporal attention

Firstly, we obtain the query map Q and key map K via the 1 × 1 convolution. The vector of the i-th row and j-th column of

query map Q is denoted by q(i,j), obviously 1 ≤ i ≤ N , 1 ≤ j ≤ C and q(i,j) ∈ RD, then we obtain criss-cross attention map

Ai,j by computing the cosine similarity between q(i,j) and vector k(m,n) in theK that are in the same row or column as q(i,j):

A
i,j
(m,n) =


q(i,j)k

T
(m,n)

‖q(i,j)‖‖k(m,n)‖
ifm = i or n = j,

0 otherwise.

(1)

After traversing all vectors in the spatial dimension of Q, we obtain N × C criss-cross attention maps, denoted by A =
{A1,1, · · · , AN,C} ∈ RN×C×(N×C). Then, we perform softmax operation to obtain the spatial-temporal attention map M :

Recurrent

M i,j = exp
(

Ai,j
)
}

N∑
m=1

C∑
n=1

exp (Am,n) , (2)

where } indicates the pixel-wise division. We add up

M i,j ~ F and F(i,j) to obtain the aggregated features F̃(i,j),

where ~ indicates the pixel-wise multiplication. We repeat the above process once to establish the connection between any

two pixels, denoted by F̃ → F̂ . The STA is easy-to-plugin with a complexity of space and time of O((N × C) × (N + C)).

Training loss

To enable F̂ n to record the prototypical patterns while ignoring the diversity, we introduce a mutual cosine embedding loss

LMCE , to obtain a more compact feature representation of F̂ n while keeping the features of abnormal clips in F̂ p away:

LMCE = 1 − Avg
1≤i<j≤N

 f̂n
i f̂n

j
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  , (3)

where Avg (·) denotes the mean value. The ξ denotes a margin. We apply the MIL ranking loss LMIL to optimize the

regression model:
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where r(·) denote the anomaly score. The first part is ranking loss, used to make the maximum score of instance in the
positive bag higher than that in the negative bag. The last two parts are smoothness loss and sparse loss, which are used to

encourage the smoothness and sparsity of scores, respectively. Balanced by the λMCE , the total loss Ltotal is as follows:

Ltotal = λMCELMCE + LMIL. (5)

Experiments

Table 1. Results of Quantitative Frame-level AUC Comparison.

Supervision Method Feature type
Frame-level AUC(%)

UCF-crime ShanghaiTech weakly† UCSD Ped2†

N
o
n
e

Hassan et al. [2] - 50.6 60.9 -

Lu et al. [3] - 65.5 - -

StackRNN [4] - - 68.0 92.2

Frame-Pred [5] - - 72.8 95.4

Mem-Guided [6] - - 70.5 97.0

V
id
e
o
-l
e
v
e
l
la
b
e
ls

Sultani et al. [1]
C3D(RGB) 75.4 86.3 -

I3D(RGB) 77.9 87.7∗ 91.8∗

Zhang et al.[7] I3D(RGB) 78.7 82.5 -

Zhong et al. [8]
C3D(RGB) 81.1 76.4 -

TSN(RGB) 82.1 84.4 -

MIST [9]
C3D(RGB) 81.4 93.1 -

I3D(RGB) 82.3 94.8 -

Ours
C3D(RGB) 81.6 88.7 92.3

I3D(RGB) 83.0 90.2 96.7

Table 2. Results of ablation studies.

Model Negative ↓ Positive ↑ Score Gap ↑ Frame-level AUC (%)

Ours 0.21 0.84 0.63 83.0

Ours w/o mutual cosine embedding loss 0.33 0.75 0.42 79.8

Ours w/ FC 0.24 0.80 0.56 82.2

Ours w/ FC w/o mutual cosine embedding loss 0.35 0.76 0.41 79.4

Success cases Failure cases

(a) Normal019 (c) Robbery102 (e) Stealing058 (g) Normal246

(d) Shooting008(b) Normal024 (f) Vandalism007 (h) Shooting047
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