AUD-19.2

Region-to-region kernel interpolation of acoustic transfer function with directional weighting

	(The University of Tokyo,
 Background The environment effects signal recordings. 	 Proposed met We employed the Herglotz wavefunctio
 ⇒ Reflections, diffraction and other physical phenomena. We calculate the <u>acoustic transfer function</u> (ATF) to represent these effects. We wish to represent the ATF in a <u>region-to-region</u> basis, using ATF measurements 	$h_{\mathrm{R}}(\mathbf{r} \mathbf{s}) = \mathcal{I}\left(\tilde{h}_{\mathrm{R}};\mathbf{r} \mathbf{s}\right),$ $\mathcal{I}\left(f;\mathbf{r} \mathbf{s}\right) := \int_{\mathbb{S}^{2}\times\mathbb{S}^{2}} e^{\mathrm{i}k(\hat{\mathbf{r}}\cdot\mathbf{r}+\hat{\mathbf{s}}\cdot\mathbf{s})} f(\hat{\mathbf{r}},\hat{\mathbf{s}}) \mathrm{d}\hat{\mathbf{r}}\mathrm{d}\hat{\mathbf{s}}$ $\bullet \text{ Which allowed us to define the fllowing product, forming a Hilbert space:}$
alone.	$\mathscr{H} = \left\{ h_{\mathrm{R}} = \mathcal{I}\left(\tilde{h}_{\mathrm{R}}; \mathbf{r} \mathbf{s}\right) : \tilde{h}_{\mathrm{R}} \in L^{2}(W, \mathbb{S}^{2} \times \mathbb{S}^{2}) \right\}$ $\langle f, g \rangle_{\mathscr{H}} = \int_{\mathbb{S}^{2} \times \mathbb{S}^{2}} \frac{\overline{\tilde{f}(\hat{\mathbf{r}}, \hat{\mathbf{s}})}}{W(\hat{\mathbf{r}}, \hat{\mathbf{s}})} \mathrm{d}\hat{\mathbf{r}} \mathrm{d}\hat{\mathbf{s}}, \ \forall f, g \in \mathscr{H}$ $\mathbf{informing this kernel function:}$
Problem statement	$\kappa(\mathbf{r} \mathbf{s},\mathbf{r}' \mathbf{s}') = \mathcal{I}\left(W(\hat{\mathbf{r}},\hat{\mathbf{s}})\left(\frac{e^{-ik(\hat{\mathbf{r}}\cdot\mathbf{r}'+\hat{\mathbf{s}}\cdot\mathbf{s}')} + e^{-ik(\hat{\mathbf{r}}\cdot\mathbf{r}'+\hat{\mathbf{s}}\cdot\mathbf{s}')} + e^{-ik(\hat{\mathbf{r}}\cdot\mathbf{r}'+\hat{\mathbf{s}}\cdot\mathbf{s}')}\right)\right)$
• The ATF can be divided into a direct component $h_{\rm D}(\mathbf{r} \mathbf{s},k)$ and a reverberant component $h_{\rm R}(\mathbf{r} \mathbf{s},k)$. • $h_{\rm D}(\mathbf{r} \mathbf{s},k) = \frac{e^{ik\ \mathbf{r}-\mathbf{s}\ }}{4\pi\ \mathbf{r}-\mathbf{s}\ }$ Assumed to be point source in the free-field	 Making the space a reproducing kernel We chose the following weight function: W(r̂, ŝ) = w(r̂)w(ŝ)
 The reverberant component can be approximated using kernel ridge regression. ⇒ We have shown this method performs better than the wavefunction expansion in [Ribeiro+, 2020]. The interpolation function will be:	$w(\hat{\mathbf{v}}) = \frac{1}{4\pi} \left(1 + \gamma^2 - \frac{\cosh(\beta \mathbf{v} \cdot \mathbf{v}_0)}{\cosh(\beta)} \right)^{-1}$ • Considering the direct component is removed, the weight was made 1 minimal in the direction connecting 0.5 the centers. \Rightarrow The hyperparameter β controls 1 the width of the cavity, γ the depth. • Parameters were obtained by 0 optimizing leave-one-out (LOO) 1 cross-validation of the square error(SQE) and Tukey biweight loss. $SQE(z) = z ^2$
should we use? ⇒ Embedding directionality into the kernel has been shown to improve sound field interpolation results in [Ito+, 2020].	$\operatorname{Tukey}(z) = \begin{cases} \frac{\sigma^2}{6} \left(1 - \left(1 - \frac{ z ^2}{\sigma^2} \right)^3 \right), \ z \leq \frac{\sigma^2}{6}, \ z > \sigma \end{cases}$

Juliano G. C. Ribeiro, Shoichi Koyama, and Hiroshi Saruwatari Tokyo, Japan)

