& Penn Adaptive Wireless Power Allocation with Graph Neural Networks _—

UNIVERSITY 0f PENNSYLVANIA \

Navid NaderiAlizadeh', Mark Eisen?, and Alejandro Ribeiro’
1 - ' ' 2 —
University of Pennsylvania Intel Labs ICASSP 20292

@ystem Model \ /Parameterized primal-dual unsupervised learning \

* We consider an interference channel with m transmitter-receiver pairs * The Lagrangian function can be written as follows:  We then update the primal and dual parameters by iteratively
{(Tx;, Rx;) ;%4 Pr, A u) performing gradient ascent/descent steps as follows:
* The channel gain between Tx; and Rx; is denoted by h;; | o . \
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« The signal-to-interference-plus-noise ratio (SINR) at Rx; can be written / / /
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Noise variance leading to the parameterized Lagrangian
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, v - Graph neural network- (GNN-)based Experimental evaluation
R * o e link parameterizations
x" ,v Interference link e We model the wireless network as a graph g — (’V’ 8, T, W) c We eva.luate the .prOpOS.ed method on networks with 6-14
x « ¥ = {1, ... m}: Set of graph nodes transmitter-recelver pairs

* w: € - R: Edge weight function

. 1 — RFo: Initial node feature function variable for larger and denser networks to make the optimization
the feature vector of node v at layer [ can be written as can be achieved.

problem feasible and maximize the sum-rate utility function.
* Our goalistolearn a power allocation policy that manages the e
yi 10+ Y w(uv) (vheh —yi1eh) o e

\ v / e € = V2\{(i, )};ep: Set of graph edges » Our proposed algorithm learns how to adaptively elevate the slack
o _ _ \ * Foreachnodev € V,welety? = r(v) denote its initial feature vector * This |eads to a much fairer resource allocation policy, where a

esilient power allocation formulation . Then, the features get transformed through multiple layers, where superior tr.ade-off between the sum-rate and the 5th percentile rate

Interference among these concurrent transmissions, and optimizes two

metrics of interest: u:(u,v)€E

* Sum throughput, representing the “cell-center” performance, and « We denote the final feature vector of node v, i.e., its node embedding, i
« 5thpercentile throughput, representing the “cell-edge” performance. as S "o
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N * We then use three GNNs to parameterize the primal/dual policies: \ Nomberof rsnsmitceeceiver pis ()
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* The slack variables adapt the constraints to the underlying channel given by \(H)  [bls?
kconditions, hence helping to treat cell-edge and cell-center users fairly / :
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