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Background

Soundwave propagation inside an environment isn’t
predictable.

The relation between source and receiver signal can be
estimated with the acoustic transfer function (ATF) of the
space.
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Background

ATF interpolation with variable source and receiver

Most ATF interpolation methods have a fixed source position.

Our objective is to describe how the ATF changes for variable
source and receiver within assigned regions. A
region-to-region interpolation.
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Background

ñThere are established region-to-region interpolation
methods.

In [Samarasinghe+, 2015], an ATF interpolation method
using a spherical wavefunction expansion was proposed.

This formulation was compared to a kernel ridge
regression method with a specialized kernel in [Ribeiro+,
2020].

The kernel method outperformed the wavefunction
expansion for every frequency.

ñThe kernel method still has issues

Neither method takes into consideration the distribution
of the sources and receivers.

The methods are rather susceptible to noise
contamination, and as such are vulnerable to outliers in
the data.
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Problem statement

Our objective is to accurately estimate the ATF between a
variable receiver/source pair r|s within regions in a space
Ω Ă R3.

We distribute L loudspeakers in a source region ΩS Ă Ω and
M microphones in a receiver region ΩR Ă Ω.

In order to interpolate the ATF between regions, we must
derive an interpolation function from the N “ LM
measurements.

Source region: 

Receiver region: 
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Problem statement

Properties of the ATF

The ATF is the superposition of two components:

hpr|s, kq “ hDpr|s, kq ` hRpr|s, kq.

The direct component hD is considered to be the equivalent
of a recorded signal in the free-field, caused by a point source.

hDpr|s, kq “ G0pr|s, kq “
eik}r´s}

4π}r ´ s}

The reverberant component hR satisfies the Helmholtz
equation on both position variables:

p∇2
r ` k2qhRpr|s, kq “ p∇2

s ` k2qhRpr|s, kq “ 0

Reciprocity for every pair r|s: hpr|s, kq “ hps|r, kq
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Optimization objective

Since hD is considered known, we focus our efforts on hR.

The interpolation function ĥR obtained from our reverberant
field measurements y “ ry1, y2, . . . , yN s.

We create the cost to be minimized:

J pfq :“
N
ÿ

n“1

|yn ´ fpqnq|2 ` λ}f}2H , f P H

The vector qn represents the n-th source/receiver position
pair.

The measurement vector y is obtained by removing the direct
component from all impulse response recordings.

The functional space H must be defined to be
representative of the data
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Kernel ridge regression

When H is a reproducing kernel Hilbert space (RKHS) of
reproducing kernel κ, the minimizer of J has a closed form:

ĥRpr|sq “ κκκpr|sqpK ` λIq´1y,

where:
κκκpr|sq “ rκpr|s,q1q, . . . , κpr|s,qN qs,

K “

»

—

–

κpq1,q1q κpq1,q2q . . . κpq1,qN q
...

...
. . .

...
κpqN ,q1q κpqN ,q2q . . . κpqN ,qN q

fi

ffi

fl

,

and λ ą 0.

In [Ribeiro+, 2020] we have shown that if the RKHS is
defined with the properties of the ATF in mind, we can
achieve accurate interpolations.
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Definition of the generalized Hilbert space

We express hR using the Herglotz wavefunction

hRpr|sq “ I
´

h̃R; r|s
¯

, where:

I pf ; r|sq :“

ż

S2ˆS2
eikpr̂¨r`ŝ¨sqfpr̂, ŝqdr̂dŝ.

We can thus define the Hilbert space pH , x¨, ¨yH q as:

H “

!

hR “ I
´

h̃R; r|s
¯

: h̃R P L2pW, S2 ˆ S2q,

h̃Rpr̂, ŝq “ h̃Rpŝ, r̂q @r̂, ŝ P S2
)

xf, gyH “

ż

S2ˆS2

f̃pr̂, ŝqg̃pr̂, ŝq

W pr̂, ŝq
dr̂dŝ, @f, g P H
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Directional kernel formulation

The weight function W gives the reproducing kernel κ as

κpr|s, r1|s1q “ I

˜

W pr̂, ŝq

˜

e´ikpr̂¨r1`ŝ¨s1q ` e´ikpr̂¨s1`ŝ¨r1q

2

¸

; r|s

¸

In [Ribeiro+, 2020], the relative position of the regions within
Ω was not taken into account.

The introduction of a weight function enables the choice of a
kernel function better adapted for the region configurations.

The weight will be separable, W pr̂, ŝq “ wpr̂qwpŝq in order to
simplify calculations and guarantee reciprocity.

As the direct component is removed, plane wave components
in the direct path are expected to be less significant.
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Proposed directional kernel weight function

The weight we propose for the interpolation method is:

wpv̂q “
1

4π

ˆ

1 ` γ2 ´
coshpβv̂ ¨ v̂0q

coshpβq

˙

, v̂ P S2

The direction v̂0 is the direction connecting the centers of ΩS

and ΩR.

The hyperparameter β adjusts the selectivity around the direct
component.

The hyperparameter γ adjusts the minimum gain baseline of
the weight.
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Proposed directional kernel weight function

Below we have an example of the weight function, represented
in a gain plot.

For a direction v̂, the distance from the center to the surface
is wpv̂q.

ñ But how do we choose β and γ?
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Leave-one-out cross-validation

Optimizing the loss function to our hyperparameters might
over-condition the method to the measured data, which has
noise.

We opted instead to minimize the leave-one-out
cross-validation error (LOO).

LOOpy, ℓq “
1

N

N
ÿ

n“1

ℓ
´

f̂npqnq ´ yn

¯

The loss ℓ was either square error (SQE) or Tukey loss.

SQEpzq “ |z|2

Tukeypzq “

$

’

’

&

’

’

%

σ2

6

˜

1 ´

ˆ

1 ´
|z|2

σ2

˙3
¸

, |z| ď σ

σ2

6
, |z| ą σ
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The uniform weight kernel

For γ “ 1, β “ 0, we have a uniform weight w “ 1{4π, κ is
known to be:

κpr|s, r1|s1q “

1

2

`

j0pk}r ´ r1}qj0pk}s ´ s1}q ` j0pk}s ´ r1}qj0pk}r ´ s1}q
˘

This kernel function coincides with the one used in [Ribeiro+,
2020], making this estimation identical.

The weighted kernel is an extension of this kernel function.

This method will be the standard of comparison.
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Experimental simulations

We conducted numerical simulations with the image source
method to compare both interpolation functions

The arrays in both source and receiver regions had
L “ M “ 41 points.

Simulator conditions:

Room dimensions r3.2, 4.0, 2.7s m

Reverberation time T60 0.45 s

Reflection coefficients r0.802, 0.866, 0.945s

Inner radius of the array 0.19m

Outer radius of the array 0.20m

Signal-to-noise ratio 20 dB
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Experimental simulations

The center of the cartesian system is at the geometric center
of the room.

The centers of the source and receiver region were
s0 “ r0.35, 0.43, 0.29sT m and
r0 “ r´0.35,´0.43,´0.29sT m.
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Error criteria

The first criterion was the normalized mean square error
(NMSE)

NMSE “ 10 log10

¨

˚

˝

ř

n

ˇ

ˇ

ˇ
ĥpq1

nq ´ hpq1
nq

ˇ

ˇ

ˇ

2

ř

n |hpq1
nq|2

˛

‹

‚

We analyzed the NMSE for 9025 possible densely-distributed
source-receiver evaluation pairs given as tq1

nu9025n“1 .

The second criterion was the normalized square error (NSE)
distribution in the regions.

The frequency of analysis for the NSE was 950 Hz
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Normalized mean square error

Normalized mean square error comparison:
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Pressure field reconstruction

Colormaps of the real part, comparing the reconstruction of the
signal generated by a single source in the center of ΩS:
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Normalized square error

Normalized square error distributions:
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Conclusion

In summary:

We defined a function space H using the physical properties
of the ATF, which allowed us to interpolate its value for
variable source and receiver positions.

We generalized a previously established kernel formulation by
adding directionality based on the expected profile of the ATF.

This proposed formulation can be optimized using the same
data points used to derive the model.

The directional kernel estimations outperformed the uniform
kernel in both mean error by frequency and in reconstructing
the ATF spatially.

Additionally, the use of a robust loss criterion also gave us
better results than the standard square error.
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