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Signal Classification
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• Automatic prediction of class label of an unknown signal 

• Uses information extracted from signal values (data from 

sensors)

• Applications:
• human activity recognition 
• physiological signal classification (e.g., ECG, EEG) 
• machine health monitoring systems 
• etc.

Source: Lara et. al. 2013

Predicted class label
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Existing methods: 

• Feature-based: train regression-based models with extracted numerical features Bagnall et. al. 2017

• End-to-end learning-based: convolutional neural networks (CNN) based classification methods Fawaz et. al. 2019

• Transport transform-based: CDT Park et. al. 2018/SCDT Aldroubi et. al. 2022 in combination with linear classifiers 

Proposed method: SCDT-NS

• A new classification technique for 1D signals that follow a specific generative model

• Uses signed cumulative distribution transform (SCDT) in combination with nearest subspace (NS) search algorithm

• Contributions:

• Highly accurate
• Data efficient

• Robust to out-of-distribution samples



Problem Statement
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Generative model:

Given, a set of increasing 1D spatial deformations of a 

specific kind denoted as              . 

Generative model for class-c is then defined to be the set:

Template

Eq. (1)
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Generative model:

Classification problem:

Generative model for class-c is defined to be the set:
Eq. (1)



Proposed Approach
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• Assumptions:

• Data were generated according to the defined generative model (compositions of a template signal)

• The compositions form a convex group

• Data space for a particular class does not overlap with data spaces corresponding to other classes

• SCDT-NS: Under these assumptions, we form a linear subspace for each class in the SCDT domain and 

employ a nearest subspace (NS) search algorithm



Signed Cumulative Distribution Transform (SCDT)
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• Cumulative Distribution Transform (CDT) for a positive PDF         with respect to uniform reference:

• SCDT of a non-negative signal with arbitrary mass:

• SCDT of a signed signal is defined as:

Eq. (2)

Eq. (3)

Eq. (4)

• SCDT ignoring the total mass terms:
Eq. (5)



Signed Cumulative Distribution Transform (SCDT)
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• SCDT ignoring the total mass terms:

Jordan decomposition CDFs of normalized signals Take inverse of CDFs



Signed Cumulative Distribution Transform (SCDT)
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• SCDT ignoring the total mass terms:

• Composition property: SCDT of is given by,

• Convexity property: Given a set of signals,

is convex if and only if is convex.



Signed Cumulative Distribution Transform (SCDT)
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Generative model in SCDT domain:

Generative model:
Generative model for class-c is defined to be the set:

SCDT:

• Forms a convex set, given      is a convex group

Eq. (6)
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• Generative model in SCDT domain:

• Define a subspace generated by the convex set 

• Class of the test sample    can be predicted by solving 

is an orthogonal projection matrix onto subspace            spanned by columns of

Eq. (7)



Algorithm
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Training Phase:

SCDT Orthogonalize



Algorithm
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Testing Phase:

Test Sample

SCDT

Search Nearest Subspace
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Experimental setup:

• Synthetic data:

• ECG data:

• Compared against:

• CNNs: shallow Schirrmeister et. al. 2017, compact Lawhern et. al. 2018, deep Schirrmeister et. al. 2017

• NS with other signal transform: DFT-NS, DWT-NS



Experiments and Results

Monday, May 09, 2022 Imaging and Data Science Laboratory 15

Evaluation: Effective and Data Efficient

• Three classes: Gabor wave, apodized sawtooth wave, apodized square wave

• Synthetic dataset was generated by applying 4th degree polynomials on three prototype signals

• Polynomial coefficients were randomly chosen



Experiments and Results
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Evaluation: Robust to Out-of-distribution Samples

• Three classes: Gabor wave, apodized sawtooth wave, apodized square wave

• Synthetic dataset was generated by applying 4th degree polynomials on three prototype signals

• Polynomial coefficients were chosen in such a way that there exists a gap between training and 

testing distributions 
Training

Testing
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Application:

• ECG data: collected from MIT-BIH arrhythmia database hosted at PhysioNet

• Three classes with three highest number of ECG fragments were used:

• Normal sinus rhythm (NSR), 

• Atrial fibrillation (AFIB), and 

• Left bundle branch block beat (LBBBB) 

• Data from same patients were not included in both training and test sets 

Accuracy (%) F1 score
DeepConvNet 47.57 0.4065 

ShallowConvNet 33.68 0.2618 

CompactConvNet 29.59 0.2466 

DFT-NS 37.93 0.3124 

DWT-NS 35.00 0.2306 

SCDT-NS 61.50 0.5979 



Summary
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• Introduced a new end-to-end 1D signal classification technique

• Generative model-based problem formulation

• Employs a nearest subspace search algorithm in SCDT space to produce a non-iterative solution to the 

classification problem 

• Effective, data efficient, and robust to out-of-distribution samples

• Future works involve studying ways to learn general mathematical categories for the space of signal 

deformations 
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• Comes with PyTransKit package: https://github.com/rohdelab/PyTransKit

• Python code: https://github.com/rohdelab/PyTransKit/blob/master/pytranskit/classification/scdt_ns.py

• Tutorial: https://github.com/rohdelab/PyTransKit/blob/master/tutorials/11_tutorial_SCDT-NS_classifier.ipynb

Source code:

• Lab website: http://imagedatascience.com/transport/
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