

We realize the feature integration considering the time lags for human emotion recognition.

27 MAY 2022

HUMAN EMOTION RECOGNITION USING MULTI-MODAL BIOLOGICAL SIGNALS **BASED ON TIME LAG-CONSIDERED CORRELATION MAXIMIZATION**

$$\hat{\boldsymbol{w}} = \arg \max_{\boldsymbol{w}} \boldsymbol{w}_{\text{gaze}}^{\top} \sum_{n=1}^{N} \boldsymbol{C}_{n}^{\text{b}} \boldsymbol{w}_{\text{brain}} \quad \text{s.t.} \quad \boldsymbol{w}_{\text{gaze}}^{\top} \boldsymbol{C}_{n}^{\text{gaze}} \boldsymbol{w}_{\text{gaze}} = \boldsymbol{w}_{\text{brain}}^{\top} \boldsymbol{C}_{n}^{\text{brain}}$$

$$C_{n}^{\text{b}} = \frac{1}{\sum_{l=0}^{L} e^{-\lambda} \lambda^{l} / l!} \sum_{l=0}^{L} \frac{e^{-\lambda} \lambda^{l}}{l!} \boldsymbol{Y}_{\text{gaze},n,l} \boldsymbol{Y}_{\text{brain},n,0}^{\top} \quad \boldsymbol{Y}_{p,n,l} = \begin{bmatrix} \boldsymbol{y}_{p,n,L-l}, \boldsymbol{y}_{p,n,L+1-l} \\ (l = l) \end{bmatrix}$$

$$(l = 1)$$

$$N : \text{number of samples} \quad \boldsymbol{w} : \text{transform vector}$$

$$C_{n}^{p} : \text{variance matrix of modality } p \quad \boldsymbol{d}_{t} : \text{number of timesteps} \quad p = \{\text{gaze} \}$$

$$(l = 1)$$

$$(l$$

Hokkaido University, Japan

EXPERIMENTAL RESULTS

Dataset

80 images included in an art photo dataset [30] (Training : 64, Test : 16)

Settings

Number of subjects : 10 Instrument : Tobii Eye Tracker 4c for gaze data LIGHTNIRS for brain activity data Ground Truth : Subject feedbacks (positive/negative) Evaluation Metrics : F1-score, Accuracy fNIRS Features: statistical and wavelet transform-

based features [29]

Hyperparameters: *L*, λ were set to 5, 1 Dimensions of Features: 440 (fNIRS), 1440 (Gaze), 50 (Integrated)

Comparative Methods

- Two methods that used gaze or fNRIS features as the abbreviation studies (Abbreviations 1 and 2).
- Five methods proposed in [9-12, 32]. These methods adopted different feature integration methods as the right table.

Quantitative Evaluation

We confirmed the following effectiveness.

- **Abbreviation 1 and 2 vs Ours**
- \Rightarrow Effectiveness of using the multi-modal sign **Deep CCA and BDAE vs Ours**
- \Rightarrow Effectiveness of considering time changes **BLSTM, MVAE and CCA with GIT vs Our**
- \Rightarrow Effectiveness of considering time lags

We verified that our method was effective for the human emotion recognition.

Hyperparameter Confirmation

We confirmed the accuracy changes with hyperparameters in our method.

- For any λ , the accuracy is best at L = 5.
- It is the highest value when $\lambda = 1$ that means that the peak of the time lag is one second.
- Our results can be close to the results reported in previous studies [19, 34] in the field of brain computing.

The human cognition process can be well represented using the time lag in the proposed method.

Acknowledgement : This work was partly supported by the KAKENHI Grant Number JP17H01744 and JP21H03456

Experimental design

	Features		Time	
	Gaze	fNIRS	Change	Lag
Abbreviation 1		\checkmark	\checkmark	
Abbreviation 2	\checkmark		\checkmark	
Deep CCA [10]	\checkmark	\checkmark		
BDAE [9]	\checkmark	\checkmark		
BLSTM [11]	\checkmark	\checkmark	\checkmark	
MVAE [32]	\checkmark	\checkmark	\checkmark	
CCA with GIT [12]	\checkmark	\checkmark	\checkmark	
Our method	\checkmark	\checkmark	\checkmark	\checkmark

		F1-score	Accuracy
	Abbreviation 1	0.65	0.52
A nals B	Abbreviation 2	0.76	0.77
	Deep CCA [10]	0.53	0.58
	BDAE [9]	0.55	0.57
	BLSTM [11]	0.44	0.44
rs	MVAE [32]	0.52	0.57
	CCA with GIT [12]	0.67	0.74
	Our method	0.78	0.81

