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Overall

Figure 1. The diagram of the proposed PU-CycGAN.

Abstract

Exisধng learning-basedmethods usually train a point cloud upsampling model

with synthesized, paired sparse-dense point clouds. However, the distribu-

ধon gap between synthesized and real data limits the performance and gen-

erality. To solve this problem, we innovaধvely regard the upsamplig task as

an opধmal transport (OT) problem from sparse to dense point cloud. Fur-

ther we propose PU-CycGAN, it can be directly trained for upsampling with

unpaired real sparse point clouds, so that the distribuধon gap can be filled

via the learning. Especially, quadraধc Wasserstein distance is introduced for

the stable training.

Introduction

In real world, the raw point clouds produced from depth cameras and Li-

DAR sensors are ođen sparse, noisy, and non-uniform. The point cloud up-

sampling technology that aims at generaধng dense, uniform and complete

point clouds. Various learning-based methods have been proposed to con-

ধnuously improve the upsampling performance. However, these methods

require paired sparse-dense data in the network training, these supervised

methods cannot be trained with real-scanned datasets such as ScanNet and

KITTI where paired dense point clouds are unavailable. To resolve the above

problems, We cast point cloud sampling as the OT problem and propose PU-

CycGAN which can be trained with unpaired point sets.

Main Contribuধons

1. We propose a weakly supervised point cloud upsampling framework that

trains the model with unpaired point clouds.

2. We notably regard point cloud upsampling as an OT problem, and design

a quadraধc Wasserstein distance to stabilize GAN’s training.

3. We introduce consistency loss and self-restraint loss to improve the

performance of the model in underlying surface representaধon.

Network Structure

Given M sparse point sets P = {{pji}Nj=1}Mi=1 and unpaired dense point sets

Q = {{qki }rNk=1}Mi=1, we aim to learn a map which transports the sparse point

sets to dense and uniformly distributed point set. Where N denotes the

number of points in each sparse point set, r is the upsampling rate.
Fig. 1 shows the overall network architecture of PU-CycGAN. Herein,

Densifier GQ and Sparsifer GP are generators which are used to fit the

map P → Q and Q → P .

In addiধon, we introduce Sparse discriminator DP and Dense

discriminator DQ.

where DP aims to disধnguish between P and generated sparse point sets

GP(Q), DQ aims to discriminate between Q and GQ(P).
Through the sparse-dense-sparse (shown in green arrows) and dense-sparse-

dense data (shown in red arrows) cycles, our model is expected to capture the

inherent upsampling paħerns and generate dense patches that are uniformly

distributed on the target surface.

Loss Function

Quadraধc Wasserstein Loss The objecধve funcধon of discriminator DP

and DQ is:
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Further, to stabilize the opধmizaধon of the generator, we set the adversar-

ial loss of the generators GQ and GP as a quadraধc funcধon, which is
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Cycle Consistency Loss To eliminates the need of paired data, we proposed

an point cloud upsampling consistency loss which is defined as follows:

Lcyc = dEM(pi, GP (GQ(pi))) + dEM(qi, GQ(GP (qi)))

Self Restraint LossWithout paired point sets as the supervision, we define

a self-restraint loss to ensure that the generated points are distributed on

the underlying surface. Herein, self-restraint loss uses the Chamfer dis-

tance to measure the loss between sparsified or densified point set and

the original one, which is
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Experimental Results

To compare with baseline methods, we first train models on PU1K and PU-

GAN’s datasets which are cropped into dense and downsampled sparse point

clouds patches respecধvely. Thenwe train a model with upaired real-scanned

sparse KITTI and dense SEMANTIC3D data to demonstrate the capability and

advantages of our method in the real applicaধons with unpaired data.

We qualitaধvely and quanধtaধvely compare our method with several base-

lines.

Quanধtaধve Analysis

Method P2F(10−3) CD(10−3) HD(10−3)

PU-Net 4.834 1.155 15.170

MPU. 3.551 0.935 13.327

PU-GAN 1.590 0.420 5.390

PU-GCN 2.499 0.585 7.577

Dis-PU 3.143 1.151 14.680

Ours 2.080 0.551 2.919

Table 1. Comparisons on PU1K against supervised methods.

As shown in Table 1, although PU-CycGAN is weakly supervised, it clearly

outperforms the strong supervision method PU-Net, MPU, PU-GCN and Dis-

PU in all three metrics.

Qualitaধve Analysis

Figure 2. Qualitaধve comparisons on KITTI.

Fig. 2 compares PU-CycGAN against themost compeধধve upsampling meth-

ods PU-GAN on KITTI. We observe that PU-GAN tends to produce more

outliers and overfill holes (e.g. the first close-up on bicycle wheels and the

second close-up), while PU-CycGAN preserves beħer underlying surface and

repair fine-grained details.

https://github.com/cognaclee/PU-CycGAN 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore — 1643 nalei@dlut.edu.cn

https://github.com/cognaclee/PU-CycGAN
mailto:nalei@dlut.edu.cn

