MULTI-DOMAIN UNPAIRED ULTRASOUND IMAGE ARTIFACT REMOVAL USING A SINGLE CONVOLUTIONAL NEURAL NETWORK

Jaeyoung Huh¹, Shujaat Khan¹, and Jong Chul Ye², Fellow, IEEE

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

^{1.} Department of Bio and Brain Engineering

^{2.} Kim Jaechul Graduate School of Al

#1684

INTRODUCTION

Ultrasound image artifact

- Ultrasound imaging (US) suffers from distinct image artifacts from various sources.
- Many researchers have proposed various model-based iterative algorithms.
 - \rightarrow computationally expensive

Various sources

- Blurring artifact
- \rightarrow Limited by the bandwidth of the transducer

- Speckle pattern
- \rightarrow Instructive & destructive signal interference

Constructive Destructive interference interference lo interference

MOTIVATION

Deep learning model

- Various deep learning approaches have been proposed recently.
- Still have some technical hurdles for wide acceptance.
 - \rightarrow different types of artifacts which user prefers distinct choice of artifact suppression algorithms. (a)
- Recently, StarGAN proposed multi-domain image transfer models using a single generator. (b)

BACKGROUND

Single-domain image-to-image translation (CycleGAN)

Zebras C Horses

"Unpaired image-to-image translation using cycle-consistent adversarial networks." CVPR, 2017.

Representative unpaired image-to-image translation method using cycle-consistency loss.

Multi-domain image-to-image translation (StarGAN)

MULTI-DOMAIN US IMAGE ARTIFACT REMOVAL USING SINGLE CNN

"Stargan: Unified generative adversarial networks for multi-domain image-toimage translation." CVPR, 2018.

- Representative multi-domain image-to-image translation method using single generator.
- \rightarrow DAS images are obtained from the scanner, it is not necessary to re-generate from other domain image.

RESULTS

Multi-Domai	n US image artifact ren	IOVa	al										
Dataset		Deconvolution performance evaluation											
			In vivo					Phantom					
In vivo and t	issue mimicking phantoms.		PSNR	SSIM	CNR	GCNR	CR	PSNR	SSIM	CNR	GCNR	CR	
Four parts of t	of the carotid and thyroid	а	17.15	0.68	0.82	0.52	7.97	15.27	0.74	1.25	0.60	11.41	
		b	Х	Х	0.74	0.53	9.15	Х	Х	1.13	0.56	12.24	
areas of 10	volunteers.	С	24.35	0.79	0.79	0.55	9.13	21.48	0.82	1.26	0.60	14.01	
(8 (train) + 2	2 (test))	d	23.97	0.80	0.75	0.53	8.61	21.54	0.81	1.14	0.56	13.84	
Unpaired trai	aining with target detect	e	20.07	0.72	0.77	0.50	7.53	19.07	0.76	1.15	0.57	9.59	
	aming with target dataset	f	23.86	0.79	0.76	0.53	8.98	22.13	0.84	1.19	0.58	13.03	

 $\min_{\theta,\phi,\eta} \max_{\varphi,\psi} L_{mlt} = \lambda_{cyc} L_{cyc}(\theta,\phi) + L_{disc}(\theta,\phi;\varphi,\psi) + \lambda_{GP} L_{GP}(\varphi,\psi) + \lambda_{cls} L_{cls}(\theta,\eta)$

Discriminator loss

 L_d

$$\frac{dsc}{E_{x \sim P_{x}}} \Big[D_{\varphi}(x) \Big] - E_{y \sim P_{y}} \Big[D_{\varphi} \Big(G_{\theta}(y) \Big) \Big] + E_{y \sim P_{y}} \Big[D_{\psi}(y) \Big] - E_{x \sim P_{x}} \Big[D_{\psi} \Big(F_{\phi}(x) \Big) \Big]$$

Gradient-Penalty loss L

Classification loss

$$GP = -E_{x \sim P_{x}}\left[\left(\left\|\nabla_{\widetilde{x}} D_{\varphi}(\widetilde{x})\right\|_{2} - 1\right)^{2}\right] - E_{y \sim P_{y}}\left[\left(\left\|\nabla_{\widetilde{y}} D_{\psi}(\widetilde{y})\right\|_{2} - 1\right)^{2}\right]$$

L_{cls} $= -E_{x \sim P_x}[p(x)\log K_{\eta}(x)] - E_{y \sim P_y}[p(G_{\theta}(y))\log K_{\eta}(G_{\theta}(y))]$

 $\boldsymbol{L_{cyc}} = E_{x \sim P_x} [x - G_{\theta}(F_{\phi}(x))] + E_{y \sim P_y} [y - F_{\phi}(G_{\theta}(y))]$

generated from conventional iterative method.

Datasets are focused B-mode using linear probe with operating frequency of 8.5 MHz

Target Generation

Deconvolution

"Increasing axial resolution of ultrasonic imaging with a joint sparse representation model." TUFFC, 2016.

Speckle removal

"A non-local low-rank framework for ultrasound speckle reduction." CVPR, 2017.

	Despeckle performance evaluation												
	In vivo						Phantom						
	PSNR	SSIM	CNR	GCNR	CR	PSNR	SSIM	CNR	GCNR	CR	arG		
а	26.99	0.65	0.82	0.52	7.97	26.68	0.66	1.25	0.60	11.41	St		
b	х	Х	1.02	0.62	7.52	Х	х	1.46	0.65	10.79			
С	35.58	0.93	1.04	0.62	7.29	29.68	0.90	1.49	0.67	11.98	sed		
d	29.62	0.89	1.05	0.61	7.38	19.96	0.84	1.39	0.64	11.97	ödo		
e	31.73	0.89	0.99	0.59	7.57	28.74	0.87	1.38	0.65	11.34	P		
f	31.78	0.91	1.02	0.61	7.86	30.02	0.89	1.49	0.67	12.52			
(a : Input, b : Label, c : Supervised, d : CycleGAN, e : StarGAN, f : Proposed)										Ы			
PSNR : Peak Signal to Noise Ratio / SSIM : Structural Similarity									Lab				
CNR : Contrast Noise Ratio / GCNR : Generalized Contrast Noise Ratio / CR : Contrast Ratio											_		

CONCLUSION

- We proposed multi-domain ultrasound (US) image artifact removal method using single convolutional neural network.
- A single network can provide blurring removed or speckle suppressed image.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea under Grant NRF-2020R1A2B5B03001980