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TTS frontend
TTS frontend converts text to phonetic symbol sequences.

TTS-
frontend

Acoustic 
Model Vocoder

京都タワーがある。
(There is Kyoto Tower.)

Kyo-o-to-ta’-
wa-a-ga/a’-ru.

Text

Linguistic 
Features

Acoustic 
Features

Speech Waveform

Highly language dependent
Japanese has mainly two characteristics.



Copyright 2022 Sony R&D Center3

• Japanese has a variety of character types and its pronunciation.
• Some Kanji have multiple candidate pronunciations corresponding to different meanings.

• Japanese is pitch (High/Low)-accent language.
• Some words have the same pronunciation but different accents and meanings.

• The pitch accent is represented by the accent phrase boundary and the accent nucleus position.

Word 京都 タワー が ある

Accent

Japanese Characteristics related to TTS

o  – to  – ta 
kyo wa – a  – ga            

このカレーは辛い。 👍👍ka-ra-i (spicy) 
tsu-ra-i (hard)

a 
ru

High
Low

Wrong pronunciation & accent lead wrong comprehension.
Japanese TTS system requires “polyphone disambiguation (PD)” and “accent prediction (AP).”

(This curry is spicy.)

chopsticks
ha

shi bridge
shi

ha

Polyphone
disambiguation

Accent
prediction
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Motivation
Pronunciation and accent depend on context.

PD: このカレーはとても辛い (ka-ra-i)。体調が悪くてとても辛い (tsu-ra-i)。

This curry is very spicy. I’m sick and it’s very hard.

AP:

However, existing methods only utilize local context.
PD: KyTea[Neubig+,10] (pointwise prediction)

AP: TASET[Suzuki+,17] (linear-chain CRF)

How to take “longer/rich context” into account?
-> Using Pre-trained Language Models.

京都
(Kyoto)

タワー
(tower)

上空
(above)

kyo’-o-to ta’-wa-a jo-o-ku-u
kyo-o-to-ta’-wa-a jo-o-ku-u

Semantic relationship
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Model: 

Features 
Explicit(EF):     

features derived from morphological analysis 

Implicit(PLM): 

features from Pretrained Language Models

BERT: subword based masked language model

Flair: character based bidirectional encoder

Explicit and implicit features are 

concatenated and input into BiLSTM. 

Japanese TTS-frontend with Pretrained Language Models (PLMs)
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Dataset for Experiments

• Polyphone disambiguation
Focus on 92 frequently used polyphonic words

• Accent Prediction

1: K. Maekawa, “Corpus of spontaneous Japanese: its design and evaluation,” in ISCA/IEEE Workshop on Spontaneous Speech Processing and Recognition, 2003, pp. 7–12.
2 : R. Sonobe, S. Takamichi, and H. Saruwatari, “JSUT corpus: free largescale Japanese speech corpus for end-to-end speech synthesis,” arXiv preprint arXiv:1711.00354, 2017.
3: ASJ Japanese Newspaper Article Sentences Read Speech Corpus (JNAS), http://research.nii.ac.jp/src/JNAS.html.

#sentence usage Source

In-house 39,353 (24,117 / 5,156 / 10,080) Train/dev/test Wikipedia/TV captions/
novels/CSJ/JSUT

Public (JNAS) 5,642 test JNAS

#sentence usage Source

In-house 9,497 (7,768 / 864 / 865) Train/dev/test TV caption

Public (JSUT) 5,000 test JSUT
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Comparison w/ & w/o PLMs on Polyphone disambiguation

Bi-LSTM w/ EF+BERT improves by 6.2/1.5% from only EF.
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Comparison w/ & w/o PLMs on Accent Prediction

Bi-LSTM w/ EF+PLM improves by 0.9/7.7% on APBP,  0.6/1.4% on ANPP from only EF.
BERT for APBP, Flair for ANPP
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TTS quality subjective evaluation
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TTS settings
Acoustic model: Tacotron2 w/ Global Style 
Token[Shen+,18. Wang+,18]
Vocoder: Parallel WaveGAN [Yamamoto+, 20]
Training data: Sub-corpus of JSUT for both models 

Evaluator
30 native Japanese Speakers

Evaluation text
25 utterance samples from in-house data

Proposed method achieved almost the same speech quality as Oracle. 
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Summary

We proposed the method which incorporates implicit/explicit features in PD/AP.
• The combination of explicit and implicit features improves both PD/AP performance.

• Methods showed better performance on MOS than conventional TTS-frontend.

• The effectiveness of PLMs type (BERT/Flair) depends on tasks.

Future Work
・Using pre-trained model from both of grapheme & phoneme
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