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ABSTRACT

The aim of this work is to propose a novel dynamic resource allocation strategy for data-
driven, adaptive, energy-efficient Federated Learning (FL) with latency and learning per-
formance guarantees, endowed with Reconfigurable Intelligent Surfaces (RISs).

Contribution: Novel dynamic optimization framework for adaptive federated learning
endowed with RISs, jointly encompassing radio and computation aspects in order to
strike the best trade-off between energy, latency, and performance of the federated learn-
ing task.

FEDERATED LEARNING TASK

N edge devices and an AP equipped with an edge server

Consider the learning problem in the unknown model variable w

N
min ;E{Ji(‘m Ti,Yi) }

At each t, the edge devices compute VJ;(w; x; ¢, y;.+) over a batch of data B; of
size |B¢| = B¢ and upload them to the AP

The edge server computes w1 via any gradient-based algorithm and fed it back
to the devices. In general:

Wil =We —p- f (Ziest VJi(W; @i, yi,t))

RIS-ENHANCED COMMUNICATIONS

K passive RISs with M reflecting elements
The phase of each element is quantized using b, bits

Each element has a complex reflection coefficient:
onx 2br _q
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The RIS-aided uplink transmission rate between user ¢ and the AP:

hit(ve)pi+ )
No B; 7

R;+ = Bjlogy (1 +

where h; (v¢) is the RIS-dependent channel coefficient:

2
K .
hig(ve) = [hfy + 3 ik diag(ore) 285

LATENCY OF TRAINING ITERATIONS

Bt J; .
® Local processing time: L,i-f’f — ' where f! is the local CPU frequency
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 Uplink communication time: L;’, = , where R; ; is the uplink data rate.
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M, where f° is the remote frequency of the
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e Remote processing time: Ly =

Server.

The overall latency at time ¢ is given by:

Li = max {Lﬁ.o; n Lyt} s
'LES'[; ) ’

POWER CONSUMPTION

* Power spent for local computation [1]: p; = v (f i)’

: L B; N,
e Power spent for uplink transmission: p; y = — 0

o Power spent for remote computation: p§ ; = vy (f{ )3

The overall power consumption at time ¢ is given by:

N
P = Zi:l (Pi,t +D5¢) + D5
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SCENARIO
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PROBLEM FORMULATION
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subject to (a) tli_{n " E E{L;} <L;— Avg. Latency Constraint
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(b) lim — Z E{G-} > G; — Avg. Learning Performance Constraint
t—oo t —0
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(c) 1tlim - Z E{ar} = a; — Avg. Convergence Rate Constraint
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ONLINE LEARNING METRICS

* Generally no closed-form expression for G+ and o

* Online estimation in a totally data-driven fashion

* (: and & to estimate online G+ and ¢, e.g. for classification:
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LYAPUNOV STOCHASTIC OPTIMIZATION

e Virtual Queues:

— Z; for the Latency inequality constraint:

Zi11 = max {o, Zi + e, (Lt - E) }
— Q¢ for the accuracy inequality constraint

Q¢+1 = max {O, Qt + €4 (é — é\t)}
— Y; for the convergence rate equality constraint:

Vi1 = Vi + ey, (@ —@)] -1 (Gt < G)

* Drift-plus-penalty function:

1 1
A7 = ]E{E(Zt%rl + Qi1 + YA — 5(2752 +QF +YP) + V- plt| &y

where ®+ = [Zt, Q¢, Yz
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ALGORITHMIC SOLUTION

e Step 1: Vt, observe @ and minimize a DPP upper bound instantaneous values [2]:

Ui, ZeLe = QiGr — Yide + V- p) (4)
Mixed-integer non linear optimization problem, closed-form solutions for any
given S¢, {b;.t }ics,, Bt and v¢, — Find S¢, {b; + }ics, and v¢ with the proposed
two-stage greedy selection, setting:
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o Step 2: Update Z; as (1), Q¢ as in (2), Y; as in (3).

GREEDY SELECTION OF {v; ¢}

 The method greedily selects {vy, ;};~_, to maximize:

N K 2
AR({”k,t}szl) = Z‘Si,t h?,t T Z hg:k,t diag(vg,¢) z?,k,t
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worse instantaneous channel conditions without RISs

where §; ; = assigns more importance to devices that experience

e Polynomial complexity in K, M and |R|

GREEDY SELECTION OF §;

e For each B; € B, the method starts from S; = () and iteratively adds the most
convenient devices, selecting {b; ; } ,f\; , and the edge resources as in (5) and (6)

* The method keeps adding devices until the value of the objective in (4) decreases

e Polynomial complexity in N, max{|C;|}, |B]
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RISE-6G

N = 9 devices and one AP equipped with an edge server

SIMULATION SET UP

Classification task on the MNIST dataset (10 classes)

CNN with 4 convolutional layers (~100K parameters)

ADAM Optimizer, learning rate 0.001, forgetting factors 51 = 0.9, and 82 = 0.99
One RIS equipped with 1-bit discrete phase shifters

The channels are generated using the ABG model, using a carrier frequency equal
to 6 GHz, with a unit variance Rayleigh fading

NUMERICAL RESULTS
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¢ The method guarantees the prescribed performance in terms of @ and G, within L

* The method reacts promptly to changes in the accuracy requirement
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e Baseline given by an equal-rate policy with all the agents always transmitting

 The tradeoff gets worse imposing a stricter G requirement

e Significant gain obtained thanks to the presence of the RIS

CONCLUSIONS

* We proposed an online strategy for adaptive federated learning empowered by
reconfigurable intelligent surfaces (RISs)

The strategy dynamically minimizes the power expenditure of the system, while
guaranteeing target learning performance and latency constraints in a fully data
driven fashion

The strategy allows the exploration of a new trade-off of communication net-
works, including power expenditure, delay, and learning performance

Numerical results on federated training of Deep Neural Networks illustrate the
advantages obtained by the proposed strategy and by the usage of RISs



