

1. Introduction

Object Detection

Semantic Segmentation

Instance Segmentation

Problem:

Existing instance segmentation models:

- Cannot solve the scale variation issue very well.
- Small effective receptive field size.
- Cannot fully leverage the foreground samples to train the regressor.

Contribution:

- We propose the MSFEM to exploit multi-scale spatial cues and enhance the single-level representation. Besides, the MSFEM can also enlarge the effective receptive field of the network, which is also helpful to improve the performance.
- We propose a collaborative learning framework where object detection and mask segmentation are integrated in a mutually beneficial manner.
- Extensive experimental results on the MS COCO dataset prove that the CoMask is competitive compared with state-of-the-art methods.

Accurate Instance Segmentation via Collaborative Learning

Tianyou Chen¹, Xiaoguang Hu¹, Jin Xiao¹, Guofeng Zhang¹, and Shaojie Wang¹ ¹Beihang University

Each MSFEM contains four subbranches and different sub-branches have different number of convolutional layers, which improve the performance with little computation overhead.

We innovatively integrate the object detection and mask segmentation in a mutually beneficial manner to avoid the interference of background regions on the final box regression

4. Comparison with SOTAs

• Best results are highlighted in **BOLDFACE**.

Method	Backbone	AP	AP_{50}	AP ₇₅	APs	AP _M	AP_L	
PANet [10]	ResNet-50	36.6	58.0	39.3	16.3	38.1	53.1	
CondInst [23]	ResNet-50	35.4	56.4	37.6	18.4	37.9	46.9	
BlendMask [3]	ResNet-50	34.3	55.4	36.6	14.9	36.4	48.9	
CoMask	ResNet-50	37.7	59.0	40.9	21.0	40.9	48.5	
MS RCNN [2]	ResNet-101	38.3	58.8	41.5	17.8	40.4	54.4	
Mask R-CNN [1]	ResNet-101	35.7	58.0	37.8	15.5	38.1	52.4	
RetinaMask [25]	ResNet-101	34.7	55.4	36.9	14.3	36.7	50.5	
ShapeMask [26]	ResNet-101	37.4	58.1	40.0	16.1	40.1	53.8	
Cascaded Mask R-CNN [21]	ResNet-101	38.4	60.2	41.4	20.2	41.0	50.6	
Mask SSD1024 [24]	ResNet-101	33.1	53.1	35.0	12.8	34.9	59.0	
CoMask	ResNet-101	38.6	60.1	41.9	21.2	41.9	50.3	

5. Ablation Studies

- is effective in modeling larger context.

Table 2. Ablation analysis for the proposed MSFEM. The inference speed of each variant is tested on a single NVIDIA Titan Xp Gpu. The best results are highlighted in bold .							Table 3. Ablation analysis for the proposed collaborative learning framework. <i>w/o</i> CL indicates the variant without using collaborative learning strategy. The best results are highlighted in bold .							
Methods	AP	AP ₅₀	AP ₇₅	APs	AP _M	APL	FPS							
CoMask ₁	36.7	57.4	39.6	19.8	40.3	49.1	4.4	Method	AP	AP ₅₀	AP ₇₅	APs	AP _M	APL
CoMask ₂	37.2	58.2	40.2	20.1	40.9	49.9	4.2	CoMask	37.3	58.2	40.2	20.2	40.8	50.3
CoMask ₄	37.3	58.2	40.2	20.2	40.8	50.3	3.9	w/o CL	37.0	58.2	39.8	20.3	40.5	49.9

3. Result

• $CoMask_4$ shows the best overall performance, which verifies the effectiveness of the proposed MSFEM. In particular, the improvement is more obvious when detecting large instances, which proves that MSFEM

• As demonstrated in table 3, CoMask outperforms *w/o CL*, which validates the effectiveness of the collaborative learning framework.