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Introduction

The loca on informa on of a User Equipment (UE) is essen al for many applica ons, e.g. emer-

gency services, autonomous driving, intelligent transporta on systems, 6G networks.

Global Naviga on Satellite Systems perform poorly in urban environments, where the likelihood

of line-of-sight (LOS) condi ons is low. Hence, alterna ve approaches, which are robust to non-

LOS condi ons are required.

We present LocUNeta: A deep learning method for localiza on, based on Received Signal

Strengths (RSS) of the beacon signals of Base Sta ons (BSs)b at the UE to be localized, and the

corresponding pathloss (for known BS power, pathloss is deducible from RSS, and vice versa)

radio map es mates (via recently proposed RadioUNet[2]) of the area of interest for each BS.

Repor ngRSS informa on is a standard feature in most of the current wireless protocols and does

not require any further specific hardware at the UE, whereas the me-based (ToA and TDoA) and

angle-based (AoA) methods require high precision clocks and antenna arrays, respec vely.

Two Novel Datasets For Urban Positioning

Prepared using WinProp [3], publicly available for the research community to inves gate the

performances of RSS and ToA ranging-based localiza on algorithms (See [1] for details).

RadioLocSeer: Simulated and es mated (via RadioUNet [2]) pathloss radio maps under

different simula on models (Dominant Path Model (DPM) and Intelligent Ray-Tracing with 2

Interac ons (IRT2)), along with the corresponding buildings, cars, BSs, and roads in image

format. UE (200 per map) and well-seperated BS loca ons (5 per map) are provided, as well.

RadioToASeer: Dataset of the ToA values of the same maps of RadioLocSeer based on

DPM, i.e., ToA values for poten al UE loca ons are found based on the dominant ray (i.e.,

the mul -path-component with the highest energy, which is the ray with shortest free

space path) that propagates from the BS to the UE loca on. Using this dataset serves as

quasi-lower bounds for the errors of the ToA ranging-based methods.

LocUNet Scenarios

We present three different scenarios to showcase the performance of LocUNet (and the com-

pared algorithms) under different degrees of accuracy of the radio map es mate (input feature

for LocUNet), with respect to the true radio map, from which the pathloss measurements are

taken. We use two different simula on methods (DPM and IRT) to represent the poten al dis-

crepancy between the real wave propaga on phenomena and the model used to es mate the

radio maps.

1. DPM:In this very op mis c scenario, we assume that the real radio maps are exactly governed

by DPM and the radio map es mates are obtained by RadioUNet, which was trained in

supervised fashion to es mate radio maps also under the DPM assump on. Hence, LocUNet

enjoys having access to very high accuracy radio maps, where the inaccuracy of the available

radio maps with respect to true radio maps is solely due to the predic on error of RadioUNet.

2. DPMToIRT2: Different from the previous scenario, here, the pathloss measurements stem

from IRT2 simula ons, while the radio map es ma ons are obtained from RadioUNet (trained

for DPM), as before.

3. DPMToIRT2Cars: Similar se ng as in DPMToIRT2, but the pathloss measurements stem from

IRT2 simula ons for an environment with addi onal obstruc ons (cars), unknown to LocUNet.

This scenario encompasses all the important sources of mismatch between the radio map

es mates and the true real maps.

aLonger version of this work is available at [1].
bEssen ally, any wireless signal source with known loca on, e.g., WiFi-Hot-spots, can be u lized.

Structure of LocUNet

A UNet variant, with the final layer of center of mass (CoM) (µx, µy) of output H(x, y) of the pre-
vious layer (quasi-heatmap, as it admits nega ve values due to the LeakyReLu being the ac va on

func on),
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where 256 is the number of pixels along each axis.

LocUNet takes pathloss measurements and radio map es ma ons for each BS as inputs (op on-

ally, the map of the buildings and the BS posi ons as one-hot images) and falls into the category

of spa al regression approach with respect to previous localiza on works in image processing (cf.

[1] for a detailed overview).

An Example

(a) Tx 1 DPM (b) Tx 2 DPM (c) Tx 3 DPM (d) Tx 4 DPM (e) Tx 5 DPM

(f) Tx 1 IRT2 with cars (g) Tx 2 IRT2 with cars (h) Tx 3 IRT2 with cars (i) Tx 4 IRT2 with cars (j) Tx 5 IRT2 with cars

(k) Tx 1 DPM via

RadioUNet

(l) Tx 2 DPM via

RadioUNet

(m) Tx 3 DPM via

RadioUNet

(n) Tx 4 DPM via

RadioUNet

(o) Tx 5 DPM via

RadioUNet

(p) DPM Scenario,

posi ve-heatmap

(q) DPM Scenario,

nega ve-heatmap

(r) DPMToIRT2Cars Scenario,

posi ve-heatmap

(s) DPMToIRT2Cars Scenario,

nega ve-heatmap

Figure 1. A generic localiza on problem from RadioLocSeer Dataset, where the pathloss at the UE from each BS is

moderate. First row: DPM true radio maps. Second row: IRT with cars true radio maps. Third row: DPM es mated

maps by RadioUNet. Fourth row: LocUNet results for the scenarios DPM and DPMToIRT2Cars. We call the

posi ve and the nega ve part of the quasi-heatmap posi ve-heatmap and nega ve-heatmap.The normalized

posi ve (by max. pixel value) and the nega ve (by min. pixel value) heatmaps of LocUNet before CoM layer are

shown in gray-level. Buildings are blue, Tx loca ons are marked with red diamonds. Es mated and true loca ons

are marked with yellow square and green cross, respec vely.

Numerical Results

Table 1. Comparison with fingerprint-based methods using the RadioLocSeer Dataset for the scenarios described.

Accuracies are in mean absolute value (MAE), which is the average 2D Euclidean distance between the es mated

UE loca on and the ground-truth loca on, in unit of meters.

Algorithm DPM DPMToIRT2 DPMToIRT2Cars (ms)

kNN [4] 7.01 23.38 27.19 ∼ 20
Adap ve kNN [5] 7.49 25.39 29.51 ∼ 20

LocUNet 4.73 9.48 13.15 ∼ 5

Table 2. Comparison with ToA ranging-based methods using the RadioToASeer Dataset.

Algorithm MAE (ms)

POCS [6, 7] 37.89 ∼ 15
SDP [8] 7.16 ∼ 600

Robust SDP 1 [9] 7.55 ∼ 600
Robust SDP 2 [10] 7.63 ∼ 600

Bisec on-based robust method [11] 9.49 ∼ 16
Max. correntropy criterion method [12] 12.45 ∼ 30

LocUNet DPM 4.73 ∼ 5

Summary

Thanks to its fully-convolu onal design, LocUNet effec vely u lizes (cf. [1]) radio map

es mates to achieve state-of-the-art localiza on performance and enjoys high robustness

to inaccuracies of these input radio maps w.r.t. the actual radio maps.

The proposed method does not require pre-sampling of the environment; and is suitable for

real- me applica ons, thanks to the RadioUNet[2], a neural network-based radio map

es mator, which can very accurately approximate ray-tracing simula ons, but much faster.

We provide two simulated novel datasets in the urban se ng to promote realis c

assessments of performances of RSS fingerprint and ToA ranging-based algorithms. We

hope that researchers will benefit from our datasets to benchmark their proposed methods

in realis c urban se ng.

To the best of our knowledge, this is the first work in the literature to provide numerical

comparisons among numerous RSS fingerprin ng and ToA ranging-based methods in a

realis c urban se ng.
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