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Graph Deep Learning: Dealing with lots of “edges”
• Non-trivial applications have a graph structure which accounts 

millions or even billions of nodes

• Dealing with huge graphs can be computationally unfeasible if 
the common geometric deep learning techniques

• The more you go in depth within the network the more the initial 
graph structure cannot encode well the pairwise relationships

Should 
I learn a new 

graph?



Mathematical Background

• Let  be a weighted undirected graph


–  is the set of vertices


–  is the set of weighted edges

𝒢 = (𝒱, ℰ)
𝒱 = {1,…, N}
ℰ = {aij}i, j∈𝒱

• Let  be the adjacency matrix of 


• Let  be the Laplacian matrix of 


–  is a matrix having  as main diagonal, and zeros elsewhere

A = {ai, j}, i, j = 1,…, N 𝒢

L = diag(1TA) − A 𝒢
diag(x) x

• A graph signal  is a mapping 


• Graph data are collections of graph signals 

x x : 𝒱 → ℝ

X = {xf}F
f=1 ∈ ℝN×F



Mathematical Background
• Linear Shift Invariant Graph Filter:

y =
K−1

∑
k=0

hkSkx

[1] D. Shuman et al., “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and 
other irregular domains,” IEEE Signal Processing Magazine, vol. 30, 10 2012.  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Mathematical Background
• Linear Shift Invariant Graph Filter:
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∑
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• The  layer of a state of the art GCN can be summarised as:
ℓ − th

z̃g
l = σl(

Fl−1

∑
f=1

Kl−1

∑
k=0

h fg
lk Sk z̃ f

l−1), g = 1,...,Fl .

[1] D. Shuman et al., “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and 
other irregular domains,” IEEE Signal Processing Magazine, vol. 30, 10 2012.  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State of the Art Architecture
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[2] Fernando Gama et al., Graphs, Convolutions, and Neural Networks, 2021, arXiv:2003.03777.

[2]

• This architecture uses the same graph for all layers!



Autoencoder-Aided Graph Convolutional Network

• Each layer is composed of three main stages:

– Filtering

– Compression

– Non-Linearity


• The idea is to have a tunable compression operation induced by the encoding 
function of the autoencoders

Sl ∈ ℝNl×Nl

Z̃ l = {z̃ f
l}

Fl

f=1

z̃ f
l ∈ ℝNl

(a) LSIGFs (b) Compression (c) Nonlinearity

σl( ⋅ )f e
l ( ⋅ )

Zl

Ul
Z̃ l+1 = {z̃ f

l+1}
Fl+1

f=1

z̃ f
l+1 ∈ ℝNl+1

[3]

[3] Lorenzo Giusti et al.  Graph Convolutional Networks With Autoencoder-Based Compression and Multi-Layer Graph Learning



Autoencoder-Aided Graph Convolutional Network

• The forward rule for the  layer is defined as:


• Where:

l − th

Sl ∈ ℝNl×Nl

Z̃ l = {z̃ f
l}

Fl

f=1

z̃ f
l ∈ ℝNl

(a) LSIGFs (b) Compression (c) Nonlinearity
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Ul
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f=1

z̃ f
l+1 ∈ ℝNl+1

z̃g
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l (ug
l )), g = 1,...,Fl

ug
l =

Fl−1

∑
f=1

Kl−1

∑
k=0

hfg
lk Sk

l z̃ f
l−1, g = 1,...,Fl

• Up to now, there is the need to learn a new graph to be used in the next layer



Joint Training of AA-GNN With Multi-Layer Graph Learning 


• The architecture requires a joint training of graph filter weights, autoencoder parameters, and 
per-layer graph representation. 


• Assuming that the shift operator   is a function of the adjacency  and letting  
be the set of all autoencoder’s parameters. Then, the joint training problem reads as: 

Sl Al W = {wl}L
l=1

min
{Al}L

l=1,H,W
ℒ({Al}L

l=1, H, W; {xi, yi}i∈𝒯)

+η
L

∑
l=1

Fl

∑
g=1

| | f d
l ∘ f e

l (wl; ug
l ) − ug

l | |2
2

+β
L

∑
l=1

Tr{ Z̃ T
l Ll Z̃ l} − γ

L

∑
l=1

1Tlog(Al1) + λ
L

∑
l=1

| |Al | |2
F

subject to
[Al]i,i = 0, [Al]i, j = [Al]j,i ≥ 0, ∀ i, j, l

Tr{Ll} = dl, Ll = diag(1T Al) − Al, ∀ l
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Joint Training of AA-GNN With Multi-Layer Graph Learning: Half Vectorization


• Since the adjacency matrices are symmetric, the number of variables of the 
optimization problem can be greatly reduced


• Let  be the half-vectorization of , obtained by 
vectorizing only the lower triangular part of . 


• The following relations hold:

αl = vech(Al) ∈ ℝ
N(N + 1)

2 Al
Al

vec(Al) = Mdαl ⟺ Al = vec−1(Mdαl)



Joint Training of AA-GNN With Multi-Layer Graph Learning: Training Algorithm


• A stochastic gradient based optimizer is chosen

• An optimizer-dependent back-propagation step is performed at each iteration 

on the current estimates to update them towards a descent direction

• Finally, the graphs estimates are obtained by projecting the updated variables 

on the feasible set



Experimental Results: Robustness to Compression


• We assessed the performance of the proposed architecture and training 
procedure we evaluated on the authorship attribution task
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• The results show the accuracy score 
compared to the compression ratio:

ρ =
N1

N
• For a fair comparison, the second 

hidden layer does not provide a 
coarser version of the first one

• AA-GNN outperforms all the other 
SOTA’s architectures even in a huge 
compression setting



Experimental Results: Robustness to AWGN


• The performance of the proposed architecture and training procedure are 
evaluated on the source localisation task
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• The results show the accuracy score 
compared to the SNR of the training 
data:

SNR = 10log10 ( σ2
𝒯

σ2
ϵ )

•  is the variance of the data used 
for training our model
σ2

𝒯

•  is the variance of the AWGNσ2
ε



Conclusions and Future Developments


• We have enabled tunable compression of the convolutional features, while 
learning different graph representations jointly with the GNN parameters


• The architecture scales well with the number of nodes of the input graph, 
extracting higher level representations of the convolutional features.


• Experiments illustrate the competitive performance of our architecture with 
respect to state of the art methods

• Future developments of this research trend include:

– Topological Neural Networks

– Explainability 

– Add regularisations to the autoencoders’ loss


