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Graph Deep Learning: Dealing with lots of “edges”

N\
e Non-trivial applications have a graph structure which accounts
millions or even billions of nodes

e Dealing with huge graphs can be computationally unfeasible if _
the common geometric deep learning techniques

e The more you go in depth within the network the more the initial |
graph structure cannot encode well the pairwise relationships /
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Mathematical Background

e Let & = (7, &) be a weighted undirected graph \O
— 7 ={1,..., N} is the set of vertices
— & ={a;}, jey is the set of weighted edges \

o LetA = {ai,]-}, i,j=1,..., N be the adjacency matrix of &

o LetL = diag(1'A) — A be the Laplacian matrix of &

— diag(Xx) is a matrix having X as main diagonal, and zeros elsewhere

4

"

e Agraphsignal xisamappingx : 7 - R

o Graph data are collections of graph signals X = {Xf};;l e RM™F

v
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Mathematical Background

e Linear Shift Invariant Graph Filter:

K-1 i
y= ) IS
k=0

[1] D. Shuman et al., “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Signal Processing Magazine, vol. 30, 10 2012.
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Mathematical Background

e Linear Shift Invariant Graph Filter:

K-1 i
y= ) IS
k=0

e The £ — th layer of a state of the art GCN can be summarised as:

Fl lKl

78 — 18 Qk 7f _
zZ; = 2 Zh S z, | 8= 1,...F}.
f=1 k=0

[1] D. Shuman et al., “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Signal Processing Magazine, vol. 30, 10 2012.
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e This architecture uses the same graph for all layers!

[2] Fernando Gama et al., Graphs, Convolutions, and Neural Networks, 2021, arXiv:2003.03777.
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Autoencoder-Aided Graph Convolutional Network
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Each layer is composed of three main stages:
— Filtering
— Compression

— Non-Linearity

The idea is to have a tunable compression operation induced by the encoding
function of the autoencoders

[3] Lorenzo Giusti et al. Graph Convolutional Networks With Autoencoder-Based Compression and Multi-Layer Graph Learning
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Autoencoder-Aided Graph Convolutional Network
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The forward rule for the [ — th layer is defined as:

Where:

# =off(u)), g=1,..
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Up to now, there is the need to learn a new graph to be used in the next layer
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Joint Training of AA-GNN With Multi-Layer Graph Learning

The architecture requires a joint training of graph filter weights, autoencoder parameters, and
per-layer graph representation.

o Assuming that the shift operator S, is a function of the adjacency A; and letting W = {wl}lL=1
be the set of all autoencoder’s parameters. Then, the joint training problem reads as:

min  Z{A} HW; {X,¥,}co
{A1}1L=1,H,W ({ l}l_l { yl} EJ)

L F
2
+1 )" D Lo fi(wiud) —us ||

=1 g=1

L L L
+4) T{ZILZ) -y ) 1Tog(A) + 1) |A]];
=1 =1 =1
subject to

(A =0, [Adi;j =1A));; 20, Vil
T{L}=d, L =diagd"A)-A, VI
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Joint Training of AA-GNN With Multi-Layer Graph Learning: Half Vectorization

e Since the adjacency matrices are symmetric, the number of variables of the
optimization problem can be greatly reduced

NN+ 1)

e Let a;=vech(A;)) € R™ 2 be the half-vectorization of A;, obtained by

vectorizing only the lower triangular part of A,.

e The following relations hold:
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Joint Training of AA-GNN With Multi-Layer Graph Learning: Training Algorithm

e A stochastic gradient based optimizer is chosen

* An optimizer-dependent back-propagation step is performed at each iteration
on the current estimates to update them towards a descent direction

e Finally, the graphs estimates are obtained by projecting the updated variables
on the feasible set

function AA-GCN TRAINING(Inputs)
fort € [1, E] do

H,o=A, (ch (Hy; By, {Gu ), vAvt))

Wit = A, (vwc (W By, {8}, ﬁt))

8yl = H(AM (valc ({al,t}l,Bt,Wt,ﬁt))), Vi
return {o; }; = {ai,e};, W=Wg, H=Hg
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Experimental Results: Robustness to Compression

e We assessed the performance of the proposed architecture and training
procedure we evaluated on the authorship attribution task

95 T T T T T T
e The results show the accuracy score
compared to the compression ratio: 90, y
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e AA-GNN outperforms all the other
SOTA’s architectures even in a huge 60
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Experimental Results: Robustness to AWGN

e The performance of the proposed architecture and training procedure are
evaluated on the source localisation task

100

e The results show the accuracy score Y
compared to the SNR of the training 95
data: 90 |
o7 S s
SNR = 10log, — <
O¢ 2 80/
=
§ 75)
o qgf is the variance of the dataused < o AAGNN
for training our model 65 4-Selection EDS
60 Coarsening GNN |
. 052 is the variance of the AWGN Y. 20 s 1 16 s

SNR (dB)
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Conclusions and Future Developments

e We have enabled tunable compression of the convolutional features, while
learning different graph representations jointly with the GNN parameters

e The architecture scales well with the number of nodes of the input graph,
extracting higher level representations of the convolutional features.

e Experiments illustrate the competitive performance of our architecture with
respect to state of the art methods

e Future developments of this research trend include: simples %i%
— Topological Neural Networks ”
— Explainability

— Add regularisations to the autoencoders’ loss

k-cycle




