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Motivation and Objective

■ Most graph signal processing (GSP) methods
are based on known network topology.

■ However, small topology changes significantly
degrade the performance of GSP tasks.

■ In particular, edge disconnections, i.e. links
between the graph vertices that have been
dropped, is a common problem, especially in
physical networks.

■ For example, in power networks, the problem
of identifying line outages due to
environmental factors, damages, aging, and
malicious attacks, is a significant problem.

Goal: By using graph signals, identify edge dis-
connections, where the original network topology
is known.

Background: GSP Definitions

■ An undirected, connected, weighted graph
G = {V , E , W}, where N ≜ |V| and W is the
adjacency matrix. If (i, j) ∈ E , the entry
Wi,j > 0 represents the weight of the edge;
otherwise, Wi,j = 0.

■ The Laplacian matrix : L ≜ diag(W1) − W.
with the eigenvalue decomposition
L = U(L)Λ(L)U(L)⊤.

■ A graph signal is a vector measured over the
vertices, a : V → RN .

■ The graph Fourier transform (GFT) and
inverse GFT (IGFT) w.r.t L are
ã(L) =

U(L)⊤a and a = U(L)ã(L).
■ The smoothness is measured by

QL(a) ≜ 1
2
Σ(i,j)∈EWi,j[ai − aj]2 = a⊤La.

■ A graph filter is a linear operator
h(L) ≜ U(L)diag

[h(λ(L)
1 ), . . . , h(λ(L)

N )]T


U(L)T .

■ We give a formal definition of smooth graph
filters for an input-output system aout = h(L)ain:

E[QL(aout)]
E[QL(ain)]

< 1.

Model and Problem Formulation

The measurement model is a vector of M time
samples of smooth graph filter output, y ≜
[yT [1], . . . , yT [M ]]T , where

y[m] = h(L)x[m] + w[m], m = 1 . . . M.

Problem formulation: Identification of edge discon-
nections from a set of possible graphs:

Hk : L = L(k), k = 0, 1, . . . , K

based on the graph signals, y, where
■ L(0) is the Laplacian of the original, known

topology (set of edges: E)
■ L(k) is the Laplacian matrix after edge

disconnections (set of edges: E \ C(k)).

Maximum Likelihood Decision Rule

The maximum likelihood decision rule is given by

argmax
0≤k≤K

log f (y; L(k))
log f (y; L(0))

= argmax
0≤k≤K

l(y|L(k)) − ρ(L(k)).

■ l(y|L(k)) presents the data term.
• In the graph spectral domain, the sufficient statistics are

NK scalars of the graph-frequency energy levels.
• For the Gaussian Markov random fields (GMRF),

l(y|L(k)) includes only data measured over the vertices
associated with the edges in the edge disconnection set.

■ ρ(L(k)) presents the penalty term.
• For nested edge disconnections subsets, a larger penalty

for the hypothesis with a larger number of disconnections.
• For the GMRF, ρ(L(k)) is a function of the second-order

statistics of the graph signal over those vertices.

Greedy Approach

■ The greedy approach starts with an empty set at
the first iteration.

■ At the lth iteration, we test all the available edges
in the graph and choose the edge that maximizes
the marginal likelihood for a single edge.

■ If the likelihood ratio of the chosen edge is higher
than zero, we add it to the edge disconnections
set. Otherwise, the algorithm stops.

■ If the maximum of edge disconnections, rmax, is
known, then it can be used as an additional
stopping condition.

The Neighboring Strategy

The neighboring strategy is inspired by the local
property of the GMRF model.
■ For a candidate edge, (i, j), calculating the

likelihood ratio of the measurements in the
β-neighborhood of i and j, N (i, β) ∪ N (j, β),
where N (i, β) is the set of vertices connected to
vertex i by a path of at most β edges.

■ In every iteration, building new suspicious edges
set for the searching in the following iteration.

■ The tunable parameter β provides a trade-off
between the identification accuracy and the
computation cost.

Identifying edge disconnections performance

We consider smooth graph filter. The initial graph was generated by using the Watts-Strogatz small-world graph model, with
N = 50 vertices, mean degree of d = 2, and |E| = 100. The elements of W are independent, uniformly distributed weights in
[0.1, 5]. Topology change is obtained by removing an arbitrary set of r edges from E .
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Figure 1:The F-score measure for the GMRF (left), the regularized Laplacian (middle), and the heat diffusion (right) filters versus SNR for the greedy
algorithm, β = 0, 1-neighbors greedy algorithm, CGL method, CCGL method, and the GGM-GLRT method with M = 1, 000 and r = 5.

Comparison with existing methods: 1. Combinatorial graph Laplacian (CGL) method [2]; 2. Constrained CGL (CCGL) method:
CGL + information on the initial Laplacian matrix, L(0); and 3. Gaussian graphical model (GGM) - GLRT: edge exclusion test [3].

Computational Complexity

■ The number of hypotheses in the general case
is K = Σrmax

r=1
|E|

r

.
■ The likelihood ratio calculations require an

inversion of N × N matrix.
■ The proposed methods search over linear

number of possibilities, which is significantly
smaller than K for large networks.

■ Given a sparse graph with a small degree,
most of the edges have small sets of β-local
neighborhood. Thus, the matrix inversions are
performed on smaller matrices and the size of
the searching edge set is smaller.

Identifying outages in power system

■ The vertices and the edges denote the buses
(generators or loads), and the transmission lines
between the buses, respectively. The branch
susceptances determine the weights of the edges.

■ We assume Phasor Measurement Units that
acquire noisy measurements of the voltage phases
at all buses. It has recently been shown that these
voltages can be considered smooth graph signals.
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Figure 2:Identifying outages in power system: IEEE-118 bus test case (left)
and the F-score measure (right) versus SNR by assuming the GMRF filter
for random combinations of outages at the transmission lines.
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