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Core-Periphery Structure
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➢ Core-periphery structure: Densely connected

groups of core vertices and sparsely connected

periphery vertices

➢ Core-periphery property is ubiquitous in

• social networks

• trade and transport networks

• citation networks

• communication networks

• brain networks

• genome-scale metabolic networks

• protein–protein interaction networks

➢ Identifying the core and peripheral vertices helps

in analyzing the central processes in networks



Prior Art
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Adjacency matrix estimated from 

the proposed method
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➢ Existing algorithms estimate core scores given the network topology

• In many applications, we have access only to node attributes

• The underlying graph structure may not always be available

➢ Conventional approaches to network topology inference

do not readily incorporate a core-periphery structure

➢ We develop an approach that learns a core-periphery

structured graph from node attributes so that the coreness

of nodes are revealed implicitly

D. Xiaowen, T. Dorina, R. Michael, and F. Pascal, “Learning graphs from data: A signal representation perspective,” IEEE Signal Process. Mag., vol. 36, no. 3, pp. 44–63, May 2019.

Adjacency matrix estimated from 

graphical lasso



Background: Gaussian Graphical Model
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A weighted and an undirected graph:

Feature matrix of    :

Sparsity structure of the precision matrix encodes all the conditional dependencies 

between the     variables associated with the vertices of 

Graphical lasso learns the sparsity pattern in by solving

Does not readily incorporate core-periphery structure!

regularization parameter that 

controls the sparsity in

empirical 

covariance matrix
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Gaussian Graphical Model with a Core-periphery Structure

Modeling the dependence of the node 

attributes on the core scores through a 

latent graph structure
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Proposed Learning Algorithm

To prevent the case where

all the weights tend to zero

To fix the scale 

of the core scores

We estimate the model parameters by maximizing the posterior distribution given data, i.e., by maximizing

The proposed optimization problem:



Proposed Learning Algorithm
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Updating the graph

Updating the core scores

known weights that 

depend on

This is a convex program that can be solved using existing solvers, e.g., QUIC

This is a linear program that can be solved using standard off-the-shelf solvers



Numerical Experiments: Model Evaluation
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Adjacency matrix estimated from 

the proposed method

Adjacency matrix of the 

groundtruth network

The core-periphery partitioning 

of the networks by the proposed 

method is similar to the others, 

in spite of not knowing the 

network directly!



Numerical Experiments: Convergence
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The proposed algorithm converges
in about 10 iterations



Numerical Experiments: Brain Network Analysis
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Data:

Functional MRI time series 

for the regions of interest in 

the cc200 parcellation for a 

total of  79 individuals

• 42 healthy subjects 

• 37 subjects with ADHD 

: average of the core score   

vectors of healthy subjects

: average of the core score 

vectors of subjects with 

ADHD

The regions with a large difference in the cores scores of the two 

groups coincide with the regions that have differences in activation 

for healthy individuals and patients with ADHD

S. Dickstein, K. Bannon, C. F. Xavier, and M. Milham, “The neural correlates of attention deficit hyperactivity disorder: An ale meta-analysis.” J. Child Psychology and 

Psychiatry, vol. 47, no. 10, pp. 1051–62, Nov. 2006.



Conclusions
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➢ We developed a generative model to relate node attributes to the core scores of vertices through a

latent graph structure.

➢ We presented a joint estimator to simultaneously infer the vertex core scores and a sparse graph

whose sparsity pattern is determined by the core scores.

➢ We presented a block coordinate ascent algorithm to solve the proposed estimation problem.

➢ We demonstrated via numerical experiments that the proposed method learns a core-periphery

structured graph from only the node attributes while learning core scores on par with methods that use

the ground truth network as input.

➢ We also applied our method to fMRI data to infer the regions that are the most affected in subjects with

ADHD.
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