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Core-Periphery Structure

» Core-periphery structure: Densely connected
groups of core vertices and sparsely connected
periphery vertices

» Core-periphery property is ubiquitous in ° .. ® o ) - — W
« social networks ey S\ 2=l N = I I
- trade and transport networks % o ) H;l-"' .......... S
- citation networks X2 B A - -
« communication networks '\: . I
*  brain networks o N . -
« genome-scale metabolic networks o e o I- r S
« protein—protein interaction networks ¢ e R SR L -
@

> ldentifying the core and peripheral vertices helps
in analyzing the central processes in networks



Prior Art

» Existing algorithms estimate core scores given the network topology
* In many applications, we have access only to node attributes
* The underlying graph structure may not always be available

» Conventional approaches to network topology inference
do not readily incorporate a core-periphery structure

> We develop an approach that learns a core-periphery
structured graph from node attributes so that the coreness
of nodes are revealed implicitly

Adjacency matrix estimated from Adjacency matrix estimated from
the proposed method graphical lasso
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Background: Gaussian Graphical Model

A weighted and an undirected graph: G = {V. £}

Feature matrix of G: X = [x;,Xa,--- , x4 € RV*4

}

X,NN(O.E),\V}Zzlj,d

Sparsity structure of the precision matrix ® = ' encodes all the conditional dependencies

between the N variables associated with the vertices of G

Graphical lasso learns the sparsity pattern in & by solving

max(gnél(]ze logdet ® — tr(SO®) — \||©||4

/ \ A>0

empirical iy "eQularization parameter that
covariance matrix controls the sparsity in @

Does not readily incorporate core-periphery structure!



Gaussian Graphical Model with a Core-periphery Structure

Modeling the dependence of the node

EO R T ~> attributes on the core scores through a
/ latent graph structure
d
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Wiy = L —¢; — Cj + elog(dij)



Proposed Learning Algorithm

We estimate the model parameters by maximizing the posterior distribution given data, i.e., by maximizing

[(©,c) = logp(X[®) + 10gp(@' c)

The proposed optimization problem: ;

ma)é)igloiie [log det ® — tr( S@} A Z W;; O]

1,7=1

s. to w;;=1—¢ —c;+ elog(dij)
w’l,j>07 i’j:1?2’...7N

» ci=M, ¢€[01], i=12,...,N
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v To fix the scale
To prevent the case where of the core scores

all the weights tend to zero



Proposed Learning Algorithm

known weights that

Updating the graph 4 dependon c

maximize log det © — tr(SO®) — A Zl wm\Gwl
1,7

This is a convex program that can be solved using existing solvers, e.g., QUIC

Updating the core scores

N
mipdmize 2 1Oyllei+e)
ij=1
N
s. to Zcz‘:Ma CiE[O,l],
1=1

¢, +c¢j <1+elog(dij), i,j=1,---,N

This is a linear program that can be solved using standard off-the-shelf solvers



Numerical Experiments: Model Evaluation

The core-periphery partitioning
of the networks by the proposed
method is similar to the others,
in spite of not knowing the
network directly!

Q. 14 | 04—t
ideal —
On—t)t | O(v—t)(v—t) SR
Adjacency matrix estimated from Adjacency matrix of the
K the proposed method groundtruth network
\
\\ Proposed MINRES Rombach RandomWalk k-cores
Celegans 160 — Otical [ % 41.940 41.821 39.076 40.877 39.051
||®] — Osdeal || 32.642 32.841 32.538 32.707 32.748
Cora |©0 — Oideal[|7 55.488 55.434 54.690 55.326 54.909
[1©] — Oideal|| % 47.626 55.722 47.884 47.983 47.625
London underground  ||@o — Oideal||7 79.216 79.249 78.7563 79.338 79.169
[11©] — Oideal|| 7 78.818 78.905 78.811 78.858 78.856
Twitter 1©0 — Oideal||7 134.692 137.142 124.112 131.278 129.221

[1©] — Osdeal |7 110.526 111.837 111.427 111.429 110.526




Numerical Experiments: Convergence
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The proposed algorithm converges
in about 10 iterations



Numerical Experiments: Brain Network Analysis

CHC — CADHD

65: Paracentral 6. 1pferior 0.59
Lobule
*

Data:

Functional MRI time series
for the regions of interest in
the cc200 parcellation for a
total of 79 individuals

* 42 healthy subjects

« 37 subjects with ADHD

Frontal Gyrus
/ 164: Inferior
/Erontal Gyrus 0.52

48: Sub-Gyral

N

112: Anterior
—————— Cingulate 0.45

123: Superior _ - 116: Insula

CHC : average of the core score Occipital Gyrus _ 0.371
vectors of healthy subjects 110 Parahippacampa
_______ Gyrus
CADHD : average of the core score 75: Uncus =" 0508

vectors of subjects with
ADHD
The regions with a large difference in the cores scores of the two
groups coincide with the regions that have differences in activation
for healthy individuals and patients with ADHD

S. Dickstein, K. Bannon, C. F. Xavier, and M. Milham, “The neural correlates of attention deficit hyperactivity disorder: An ale meta-analysis.” J. Child Psychology and
Psychiatry, vol. 47, no. 10, pp. 1051-62, Nov. 2006.



Conclusions

» We developed a to relate node attributes to the core scores of vertices through a
latent graph structure.

» We presented a to simultaneously infer the vertex core scores and a sparse graph
whose sparsity pattern is determined by the core scores.

» We presented a to solve the proposed estimation problem.

» We demonstrated via numerical experiments that the proposed method learns a
while

» We also applied our method to fMRI data to infer the regions that are the most affected in subjects with
ADHD.
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