Towards Robust Visual Transformer Networks via K-Sparse Attention IEEE ICASSP 2022 Paper #4604

Sajjad Amini, Shahrokh Ghaemmaghami

Electronics Research Institute Sharif University of Technology

May 11, 2022

IEEE ICASSP 2022

K-Sparse Attention

IEEE ICASSP 2022

K-Sparse Attention

■ ► ■
May 11, 2022

・ロト ・回ト ・ヨト ・ヨト

Deep Learning Architectures [2]

Strengths

Capable of Feature Engineering

- Unstructured data accepted
- Self-supervised Efficiency
- Multimodality

Robustness

Challenges

- Data Hunger
- Loosely Interpretable
- Low Robustness
- Computational Complexity

Figure: Sample Adversarial attack [1]

IEEE ICASSP 2022

K-Sparse Attention

Convolution vs. Attention

<ロ> (日) (日) (日) (日) (日)

K-Sparse Attention Justification

Justifications

- Improve accuracy by blocking the propagation of irrelevant information
- Improve robustness via blocking back-propagation through irrelevant paths

IEEE ICASSP 2022

Vision Transformers (ViT) [4]

Figure: Visual Transformer Architecture (Photo from [4])

ICCC	ICACCD	<u></u>
	ICA33F	2022

K-Sparse Attention

E 990

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

K-Sparse Attention Formulation

Basic Constrained Formulation

$$\mathcal{P}: \min_{\mathbf{p}} \sum_{j=1}^{N} D(\mathbf{y}_{j}, \widehat{\mathbf{y}}_{j}) \ w.r.t \ \|\mathbf{w}_{i,l}^{j}\|_{0} \leq K_{i,l}^{j}, \begin{cases} 0 \leq i \leq l_{l} \\ l \in \mathcal{S} \end{cases}$$

Vector of transformer parameters

where:

• p

I₁
 S

- N, j
- **y**_j, **ŷ**_j
- i, l
- $\mathbf{w}_{i,l}^{j}, K_{i,l}^{j}$
- Number of training samples, Training set index
 Network and target output for *j*-th sample
 - Sequence position, layer index
 - Weight vector and corresponding sparsity level
 - Sequence length for *I*-th layer
 - Regularized attention module set

K-Sparse Attention Formulation

Unconstrained Formulation

$$\begin{split} \min_{\mathbf{p}} \sum_{j=1}^{N} \left[D(\mathbf{y}_{j}, \widehat{\mathbf{y}}_{j}) + \sum_{l \in \mathcal{S}} \sum_{i=1}^{l_{l}} \mathcal{I} \left\{ \|\mathbf{w}_{i,l}^{j}\|_{0} \leq \mathcal{K}_{i,l}^{j} \right\} \right] \\ \mathcal{I} \left\{ \|\mathbf{x}\|_{0} \leq \delta \right\} = \begin{cases} 0 & \text{if } \|\mathbf{x}\|_{0} \leq \delta \\ \infty & \text{if } \|\mathbf{x}\|_{0} > \delta \end{cases} \end{split}$$

where:

9/17

K-Sparse Attention Formulation

Using Penalty method [5]

$$\mathcal{P}_{\mu}: \min_{\mathbf{p}, \{\mathbf{s}_{i,l}^{j}\}} \sum_{j=1}^{N} \left[D(\mathbf{y}_{j}, \widehat{\mathbf{y}}_{j}) + \sum_{l \in \mathcal{S}} \sum_{i=0}^{l_{l}} \left(\mathcal{I}\left\{ \|\mathbf{s}_{i,l}^{j}\|_{0} \leq \mathcal{K}_{i,l}^{j} \right\} + \frac{1}{2\mu_{i,l}^{j}} \|\mathbf{s}_{i,l}^{j} - \mathbf{w}_{i,l}^{j}\|_{2}^{2} \right) \right]$$

For $\mu_{i,l}^{j} \rightarrow 0$, \mathcal{P}_{μ} can approximate \mathcal{P} .

Using proximal mapping:

$$\mathbf{s}(k+1) = \arg\min_{\mathbf{s}} \mathcal{I}\left\{\|\mathbf{s}\|_{0} \leq K\right\} + \frac{1}{2\mu}\|\mathbf{s} - \mathbf{w}(k)\|_{2}^{2} = \operatorname{Prox}_{\mathcal{I}}(\mathbf{w}(k)) = [\mathbf{w}(k)]_{K}$$

Using gradient based optimization methods:

$$\mathbf{p}(k+1) = \arg\min_{\mathbf{p}} \sum_{j=1}^{N} \left[D(\mathbf{y}_{i}, \widehat{\mathbf{y}}_{i}) + \sum_{l \in \mathcal{S}} \sum_{0 \le i \le l_{l}} \frac{1}{2\mu_{i,l}^{j}} \|\mathbf{s}_{i,l}^{j}(k+1) - \mathbf{w}_{i,l}^{j}\|_{2}^{2} \right]$$

-

Algorithm pseudocode for the calculation of

Input: Training patterns ({ X_i, y_i }), N_1, N_2, c, μ . **Output:** Network parameters vector **p**_{final} 1: $\mathbf{p}_0, k = 0, m = 0$ 2: while $m < N_1$ do 3. while $k < N_2$ do $\mathbf{s}_{i,l}^{j}(k+1) = [w_{i,l}^{j}(k)]_{K_{i,l}^{j}}$, for *i*, *l* and *j* 4: $\mathbf{p}(k+1) = \arg\min_{\mathbf{p}} \sum_{j=1}^{N} \left[D(\mathbf{y}_{i}, \widehat{\mathbf{y}}_{i}) + \sum_{l \in S} \sum_{0 \le i \le l_{i}} \frac{1}{2\mu_{i}^{j}} \|\mathbf{s}_{i,l}^{j}(k+1) - \mathbf{w}_{i,l}^{j}\|_{2}^{2} \right]$ 5: 6: $k \leftarrow k + 1$ end while 7. 8: $\mu \leftarrow \mathbf{c} \cdot \mu$ $m \leftarrow m + 1$ Q٠ $\mathbf{p}_0 \leftarrow \mathbf{p}$ 10. k = 011: 12. end while

イロト イポト イヨト イヨト 二日 二

Sparsity Comparison

Hoyer measure vs. Epochs (Blue: ViT - Red: KSA-ViT)

Untargeted Adversarial Attacks

IEEE ICASSP 2022

K-Sparse Attention

Tuno	CW-L2			CW-Linf					
туре	ASR	L_1	L ₂	L_{∞}	ASR	L_1	L ₂	L_{∞}	
Satndard	0.62	27.29	0.74	0.08	,0.81	,37.70	,0.81	,0.033	
Layer 1	0.60	32.71	0.88	0.09	,0.78	,46.08	,0.97	,0.036	
Layer 2	0.57	32.38	0.87	0.09	,0.76	,45.82	,0.96	,0.036	
Layer 3	0.61	30.91	0.83	0.09	,0.76	,46.13	,0.97	,0.036	
Layer 4	0.58	33.46	0.90	0.09	,0.79	,46.14	,0.97	,0.036	
Layer 5	0.56	33.46	0.90	0.09	,0.77	,48.06	,1.00	,0.036	
Layer 6	0.58	32.95	0.88	0.09	,0.77	,46.98	,0.98	,0.036	
All	0.56	34.83	0.93	0.09	,0.75	,49.51	,1.03	,0.036	

IEEE ICASSP 2022

K-Sparse Attention

≣ ▶ 🖹 🖋 May 11, 2022

イロト イポト イヨト イヨト

^م ۲۰ (۲۵) م

Conclusions

Dense weight vector in the attention module

- Lower the generalization of architecture
- Provide space for adversarial attacks

K-Sparse attention

- \bullet Formulation Based on ℓ_0 norm regularizer
- Solve the problem using penalty method
- Limit the weight matrix in an unstructured manner
- Improve the generalization performance
- Improve adversarial robustness

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li, "Boosting adversarial attacks with momentum," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2018, pp. 9185–9193.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, "Deep learning," *Nature*, vol. 521, no. 7553, pp. 436–444, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, "Attention is all you need,"

in *Advances in neural information processing systems*, 2017, pp. 5998–6008.

References II

 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al., "An image is worth 16x16 words: Transformers for image recognition at scale,"

arXiv preprint arXiv:2010.11929, 2020.

Sajjad Amini and Shahrokh Ghaemmaghami,

"A new framework to train autoencoders through non-smooth regularization,"

IEEE Transactions on Signal Processing, vol. 67, no. 7, pp. 1860–1874, 2019.