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Introduction

• Typically,  data Processing on graphs operations work with 
fixed-size graphs 

• Graphs often grow in size 

• This makes processing data over expanding graphs a challenge
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Example: Recommendation Systems

• Graph filters process ratings over user graph to predict preferences for existing 
users1 (white cells of matrix) 

• New user has no data, cannot attach to the user graph

1. Huang, W., et. al, Rating prediction via graph signal processing 

User graph for one itemRatings Matrix
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Related works and Gap 

• All approaches rely on some information about the new node to operate, be it signal 
(Topology ID, Link Prediction), its connectivity (Link Prediction, related works) 

• Existing works on expanding graphs require incoming node connectivity2,3, or estimate it 
from features4 

Gap:  Find a way to figure connectivity and subsequent data-processing for new nodes 
approaching a graph when no information is available

2. Shen et. al.,  Online Graph Adaptive Learning With Scalability and Privacy 
3. Venkitaraman et. al., Recursive Prediction of Graph Signals With Incoming Nodes 
4. Dornaika et. al., Efficient dynamic graph construction for inductive semi-supervised learning
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Problem Formulation

• Node  attaches to  with probability  and edge weight  
• Edges directed towards  
• Attachment vector ,  with prob. 

v+ vi pi wi
v+

a+ ∈ RN [a+]i = wi pi

We consider a stochastic attachment model5,6

5. Erdos, P. and Rényi, A., On the evolution of random graphs 
6. Barabási, A.L. and Albert, R., Emergence of scaling in random networks 
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Prob. Formulation (contd.)

• Expanded adjacency matrix:    

•   has signal , we have the expanded signal   

•   is an element-wise independent weighted Bernoulli random vector 

•  Its expectation is   and covariance  

•  The adj. matrix  after attachment obeys     

A+ = [ A 0
a⊤

+ 0]
v+ x+ x+ = [x, x+]⊤

a+

𝔼[a+] = w ∘ p Σ+ = diag(w∘2 ∘ p ∘ (1 − p))

𝔼[A+] = [ A 0
(p ∘ w)⊤ 0]
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Adaption to a task

• Main task is to solve the parameters  relative to a task 

• Use training set    for empirical risk minimisation 

•  -th node sample,  incoming node signal/ label 

• : sample attachment pattern ,  binary sample attachment pattern 

w, p

𝒯 = {(vt+, xt+, at+, bt+)}t

vt+ : t xt+ :

at+ bt+ :

1.  
2.  
3.  
4.

v+
x+ =
a+ = [0.3,0,0,0,0,0,0.4,0,0,0]⊤

b+ = [1,0,0,0,0,0,1,0,0,0]⊤
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Adaption to a task

• Task-specific cost    f𝒯(p, w, xt+)

We solve

 act as regularisers,  constraint set for edge weightsg𝒯( ⋅ ), h𝒯( ⋅ ) 𝒲 :



9

Task: Interpolation at incoming node

• Predict signal at an incoming node with no prior information 

• Node attaches to , expanded signal before interpolation 

• For interpolation we use FIR graph filters7 with shift operator  

• Filter Output , filter  

• Interested in the error  

𝒢 x+ = [x,0]⊤

A+

y+ =
L

∑
l=1

hlAl
+x+ h = [h1, …, hL]⊤

𝔼[([y+]N+1 − x+)2]

7. Sandryhaila, A. and Moura, J.M., Discrete signal processing on graphs 
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Task: Interpolation at incoming node

• Here,  is the bias for that node 

• The term  is the output variance 

• We need to avoid solutions like  by using regularisers

((w ∘ p)⊤Axh − x⋆
+)2

h⊤A⊤
x Σ+Axh

p = 1N, 0N

The MSE is
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Training

• Not always convex in , convex in  

• We use alternating projected gradient 
descent 

p w

Convex in  when p
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Numerical Results: Synthetic Graphs

• Erdos-Rényi and Barabasi-Albert, each of  of  nodes 

• Generate band-limited graph signal 

• Generate   with corresponding  pair 

• Use as filter the simple shift operator to generate  at each node 

• Evaluate MSE over  such realisations for each node 

•  Compare with uniformly random and preferential attachment

100

𝒯 p, w

x+

100
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Numerical Results: Convergence

ER BA

Ensuring marginal convexity not a good idea. 

Training with learning rates 10−5
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Numerical : MSE at incoming node

• Proposed outperforms rest, shows importance of task-data-topology coupling 

• We also train separately for each variable , given the other 

• Training only over  performs better because of convexity in itw
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Numerical Results: Item cold start collaborative filtering 
 

Movielens 100K: 943 users, 1152 Items

Nearest neighbour Graph for one userRatings Matrix

We predict ratings for new items for each user graph 
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Numerical Results: Violin plots
 100 ≤ ratings 100 ≤ ratings ≤ 200 200 ≤ ratings

We do best in predicting ratings for new items in data scarcity settings 

Does better than other attachments. 

Shows advantage of personalised recommendations.
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• Process a sequence of incoming nodes without repeated re-training. 

• Processing data on both the existing graph and the incoming node.

• Data, topology and task-driven attachment model for incoming nodes without 
prior information 

• Parameterised by attachment probabilities and edge-weights, obtained by 
alternating projected gradient descent 

• Outperforms stochastic and purely data-driven attachment 

Conclusion

Future Work
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Thanks


