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Modern Deep Learning Practice and 
the Terminal Phase of Training
• These days we use networks that are massively 

overparameterized
• Networks are usually trained to fit the training set (nearly 

zero training error)
• Often, they are trained for longer, beyond zero training 

error, to go towards zero training loss
• This is what we call the Terminal Phase of Training

• What happens at the end of this? (Focus on the last layer)
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Some Notation

• We have a classification problem with 𝐶 classes
• Inputs – 𝒙!(#), 𝑛 = 1…𝑁, 𝑐 = 1…𝐶
• Deep Network divided into features and classifier: 𝑓𝑾 𝒙
= 𝑾&𝒉(𝒙)
• Last layer features: 𝒉!(#), 𝑛 = 1…𝑁, 𝑐 = 1…𝐶
• Classifiers: 𝑾&

# , 𝑐 = 1…𝐶

• Classification rule: argmax#! 𝑾&
#! , 𝒉(𝒙)
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More Notation

• Statistics of the last layer features:

• Global mean: 𝝁! =
"
#$
∑%&",(&"
#,$ 𝒉% (

• Class means: 𝝁( =
"
#
∑%&"# 𝒉% ( , 𝑐 = 1…𝐶

• Within class covariance: Σ) = "
#$
∑%&",(&"
#,$ 𝒉% ( − 𝝁( 𝒉% ( − 𝝁(

*

• Between class covariance: Σ+ =
"
$
∑(&"$ 𝝁( − 𝝁! 𝝁( − 𝝁! *
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Illustration
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training. Proceedings of the National Academy of Sciences, 117(40), 24652-24663.



Neural Collapse
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Neural Collapse

(NC1) Variability Collapse: All last layer features are the same within
the same class 𝒉 𝒙𝒏 𝒄 = 𝝁𝒄

(NC2) Equinorm and Equiangularity of the centered class means

𝝁𝒄 − 𝝁𝑮 𝟐 = 𝝁𝒄! − 𝝁𝑮 𝟐; 𝝁𝒄 − 𝝁𝑮, 𝝁𝒄! − 𝝁𝑮 ∝
𝑪

𝑪 − 𝟏
𝜹𝒄,𝒄! −

𝟏
𝑪 − 𝟏

(NC3) Self Duality of classifier and last layer features 𝑾𝑻

𝑾 𝑭
= 𝑴̇

||𝑴̇||𝑭

(NC4) Nearest Class Center Classification

argmax(! 𝑾4
(! , 𝒉(𝒙) = argmin(! 𝒉 𝒙 − 𝝁𝒄
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Neural Collapse in Deep 
Homogeneous Models
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Deep Homogeneous Networks

In this work we study Deep Homogeneous ReLU (rectified 
linear unit) networks trained with the square loss

𝑓𝑾 𝒙 = 𝑾&𝜎 𝑾&'(…𝑾)𝜎 𝑾(𝒙

ℒ(𝑾) =
1

2𝑁𝐶
7

!,#,+,(

-,.,.

𝒚! #
+ − 𝑓𝑾

+ 𝒙! #

)
+
𝜆
2
7
/

𝑾/ 0
)
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Neural Collapse Solutions Cannot 
Interpolate
Lemma 1: For Deep Homogeneous networks trained on the unregularized 
square loss (𝜆 = 0), solutions that exhibit Neural Collapse do not interpolate 
the training data and hence are not global minima

Proof sketch: Let 𝑯 ∈ ℝ!×#$ and 𝒀 ∈ ℝ$×#$ be the matrices of last layer 
features and one-hot labels respectively

(NC1) means that 𝑯 can be factorized as 𝑯 = 𝑴𝒀 , where 𝑴 ∈ ℝ!×$ is a matrix 
whose columns are the class means (assume that the global mean 𝝁𝑮 = 𝟎)
(NC2, NC3) means that 𝑾𝑴 = &$

$'(
(𝑰 − (

$
𝟏𝟏)), which means

ℒ 𝑾 =
1

2𝑁𝐶 𝑾𝑴𝒀− 𝒀 *
+ =

1
2 1 − 𝛼 + +

𝛼+

𝐶 − 1 > 0
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Weight Decay Prevents Interpolation
Lemma 2: The global minima of the regularized square loss of a deep 
homogeneous ReLU networks do not interpolate the training data

Proof Sketch: We can rewrite the loss using gradient flow on the parameters 
of the network

ℒ 𝑾

= −
1
4
𝜕 𝑾,

+

𝜕𝑡 +
𝜆
2 <
-,-/,

𝑾- *
+ +

1
2𝑁𝐶 <

01(,21(

#,$

||𝒚0 2 | ?
+

+
− 𝒚0 2 , 𝑓𝑾(𝒙0 2 )

We arrive at a contradiction for interpolating critical points by evaluating the 
loss using the above expression as well as the direct evaluation

ℒ = 4
+
∑- 𝑾- *

+ ℒ = 4
+
∑-,-/, 𝑾- *

+
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Symmetric Quasi-Interpolation

Since Deep Homogeneous networks trained with the 
regularized square loss cannot interpolate the training data, 
we make the following assumption about the interpolation 
errors (this assumption is similar to label-smoothing)

Assumption: For a 𝐶-class classification problem, a 
classifier 𝑓:ℝ1 → ℝ. symmetrically quasi-interpolates a 
training dataset if for all training examples 𝒙! # in class 𝑐, 
𝑓 # 𝒙! # = 1 − 𝜖, 𝑓 #! 𝒙! # = 2

.'(
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Main Result

Theorem: For a ReLU deep homogeneous network trained 
on a balanced dataset with the regularized square loss (𝜆
≠ 0), critical points of gradient flow that satisfy symmetric 
quasi-interpolation also satisfy the conditions (NC1-4) for 
Neural Collapse 
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Proof Sketch
(NC1) follows from the fact that 𝑓𝑾(𝒙" # ) does not depend on n.

(NC3) can be shown by simple algebra from the gradient flow equilibrium 
condition (setting $𝑾!

"

$%
= 0) . We obtain 𝑾&

# = '
((*+,)

×(𝝁𝒄 − 𝝁𝑮)

(NC2 Equinorm) can be shown by computing 𝑾&
# , $𝑾!

"

$%
, and setting $𝑾!

"

$%
= 0 to 

obtain 𝑾&
# 0

= ,
*(

𝜖 − *
*+,

𝜖0

(NC2 Equiangularity) can be shown from the symmetric quasi-interpolation 
condition, and the duality between 𝑾&

# and 𝝁𝒄−𝝁𝑮. 

We obtain 
𝑾!
" ,𝑾!

"#

𝑾!
" 𝑾!

"#
= − ,

*+,
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Experiments
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Summary
• Training deep networks beyond data separation leads to Neural 

Collapse which dramatically simplifies the model of a deep 
network
• This suggests an intriguing model for a deep classifier – features 

become templates at the last layer, and we do template matching.
• Weight Decay is necessary for neural collapse to occur in 

homogeneous models
• Future work: 

• Moving beyond our assumption of symmetric quasi-interpolation
• Bounding NC measurements in terms of deviations from the ETF 

structure rather than exactly matching the ETF structure
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Thank You!
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