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Problem definition

- .

Voice
Conversion (VC)

‘We can do it!’ ‘We can do it!’

Transform a recording:

e Converting non-linguistic information (speaker identity)

* Preserving linguistic information (content)
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Why voice conversion?

» Speaker-identity modification
* Voice dubbings for movies

* Pronunciation conversion

» Personalized Text-to-Speech systems
* Provide a simple solution

* The same sentence said by different people has different effect
» Entertainment

* Gamming: avatar voices

* Singing voice conversion
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VC Challenge: Non-parallel training data

» Parallel training data
* Very sensitive to misalignment

* Expensive to collect

‘We can do it!’

» Non-parallel training data
e Easy to collect

» Difficult to deal with non-parallel data

‘We can do it!’
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‘We can do it!’

‘Hello world!’



VC Challenge: Vocoder dependence

Source

Voice conversion |:> 3
system :

» Most of VC systems rely on a vocoder to produce audio waveforms

e Slow at inference time
e Quality of audio is vocoder-dependent

* Feature mismatch problem when training data are limited
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VC Challenge: Zero-shot voice conversion

Perform VC from/to speakers that are unseen during training

. R

Voice
Conversion (VC)

‘We can do it!’ 1 ‘We can do itV
o
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NVC-Net: End-to-end adversarial voice conversion

> Contributions

* NVC-Net can directly generate raw audio without vocoder
 NVC-Net is very fast at inference

* NVC-Net supports zero-shot voice conversion
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NVC-Net: Network architecture

» An utterance x is generated from two latent embeddings
e Speaker identity z
e Speech content ¢
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Generator
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Discriminator
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Reference

Input Conditional input

Speaker encoder

How to disentangle the speaker identity from the speech content?
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NVC-Net: Objective functions (l)

» Generating high-fidelity audio for a target speaker
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Discriminator D)

Speaker 1: Real/fake

Speaker 2: Real/fake

Speaker M: Real/fake



NVC-Net: Objective functions (ll)

» Reconstructing highly-perceptually-similar audio waveform from latent embeddings

* Feature matching loss

L
1
£ (E,, B, G) = Bens [z i

1=1

N;
e Spectral loss

LY(E,, Ey, Q) = Fe,

spe
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NVC-Net: Objective functions (lil)

» Preserving the speaker-invariant information during the conversion

* Converted utterance preserves the speaker-invariant characteristics of its input audio

Lon(Fe, G) = B [[| o) = Ee(G(E(x),9) 3]

» There are two benefits:
* This allows cycle conversion

* Disentangling the speaker identity from the speech content
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NVC-Net: Objective functions (IV)

» Perform stochastic sampling from the speaker latent space

* Penalize the deviation of the speaker output distribution from a prior Gaussian

La(Ey) = Ex [Dia (p(2]) |V (2]0, )]

i Two ways to sample a speaker emebedding:
= from the prior distribution N(z|0;1)
Reference o
= from p(z/x) for a reference utterance x

Speaker encoder
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Results: Objective evaluations

» Spoofing (% of correctly classified)
= The classifier is an Melspectrogram-based convolutional classifier
= The classifier reaches 99% of accuracy on real speech
* Training set: 37,508 samples
* Test set: 4,235 samples

Table 1: Spoofing evaluations of the competing methods

Model StarGAN-VC2 AutoVC Blow NVC-Net! NVC-Net

Spoofing 19.08 82.46  89.39 96.43 93.66
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Results: Subjective evaluation

AutoVC mm NVC-Nett B NVC-Net
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Subjective evaluation for traditional VC settings with 95% confidence intervals
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Subjective evaluation for zero-shot VC settings with 95% confidence intervals
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Results: Ablation studies

Speaker identification accuracy Model size and inference speed comparisons

Model Content Speaker Model # parameters Inference speed Inference speed
(in millions) GPU (in kHz) CPU (in kHz)
NVC-Net! 1921 N/A StarGAN-VC2* 9.62 60.47 35.47
aI' = . . .
NVC-Net 2415 99.22 AutoVC* 28.42 0.11 0.04
Blow 62.11 441.11 2.43
[_NVC-Net 15.13 3661.65 7.49
Less memory Very fast on Close to real
footprint GPU time on CPU
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Barnes-Hut t-SNE visualization
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Demo: https://nvcnet.github.io/
[ |
[m] Py

Scan QR code for the code and demo page
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