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Overview

Brain connectivity measures and non-linear connectivity analysis.

Architecture and formulation of the Component-wise Multi-Layer
Perceptrons(cMLPs) and their use.

Modifications to include frequency band specific connectivity estimates
and dealing with non-stationarity.

Simulations to showcase the utility of proposed NLGC and Spec NLGC
methods.

Implementing proposed method to an EEG time series data recorded
during an epileptic seizure.

Conclusion and future research prospects.
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Brain Connectivity Measures

Brain connectivity network dynamics is key to understanding many
complex neuronal processes.

Brain Connectivity
Measures

Functional Connectivity
(Temporal correlation)

Effective Connectivity
(Lead-lag effect between

different channels)

Model based methods
(VAR, PDC)

Model free methods
(Transfer entropy, directed

information)

Model-based measures used in current studies mostly assume linear
directed connections between the channels.

Granger causality (GC) is a powerful measure that is used frequently to
analyze effective connectivity in multi-channel brain signals.

GC is often implemented in context of VAR models, which assumes that
underlying connections are linear.
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Non-Linear Connectivity Analysis

Kernel based methods: In some studies, GC has been implemented
using kernel functions to get non-linear GC estimates.

Our Method: We propose NLGC and Spec NLGC models which utilizes
component-wise MLPs to get non-linear GC connection estimates.

Past studies have shown the utility of MLPs in time-series forecasting.
But, due to black-box nature of MLPs, it is hard to use them for directed
connectivity estimation.

Solution: Use component-wise MLPs(i.e. cMLP), which is using one
MLP for every channel of the data
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Component-Wise Multi-Layer Perceptrons

A generalization of the classical VAR(K) model would be to model the
current values X (t) using past values X1(t

′),X2(t
′), ...,XN(t

′) using some
non-linear function g(.) such that:

X (t) = g(X1(t
′),X2(t

′), ...,XN(t
′)) + ϵ(t)

g(.) is model using MLPs. We model each channel separately, i.e. using
cMLPs to get a interpretable architecture:

Xi(t) = gi(X1(t
′),X2(t

′), ...,XN(t
′)) + ϵi(t)

To implement each gi(.), we implement cMLPs of single hidden layer
h1(t) ∈ RH with H neurons:

Hidden layer : h1(t) = σ

[
K∑

n=1

W 1nX (t − n) + b1

]
Output layer : Xi(t) = W 2h1(t) + b2
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cMLP Architecture Comparisons

X1(t-1)

X2(t-1)

XN(t-1)

X1(t-2)

X2(t-2)

XN(t-2)

X1(t-K)

X2(t-K)

XN(t-K)

X1(t-2)

X2(t-2)

XN(t-K)

Input Layer Output Layer:
 Linear Combination 

Xi(t)

Intermediate Layers

X1(t)

XN(t)

X2(t)

Traditional Approach: Joint Network

Number of 
Inputs = N*K

Number of
Outputs = N

(a) Traditional use

X1(t-1)

X2(t-1)

XN(t-1)

X1(t-2)

X2(t-2)

XN(t-2)

X1(t-K)

X2(t-K)

XN(t-K)

X1(t-2)

X2(t-2)

XN(t-K)

1st Layer
h1(t)

(L-1)th Layer
hL-1(t)

Input Layer

Output Layer:
 Linear Combination 

Xi(t)

gi{x1(t'),x2(t'),...,xN(t')}

Output Layer:
 Linear Combination 

(b) Component-wise MLP

XN(t-1)

XN(t-2)

X1(t-K)

XN(t-K)

X1(t-1)

Xj(t-1)

X1(t-2)

Xj(t-2)

Xj(t-K)

1st Layer
h1(t)

(L-1)th Layer
hL-1(t)

Input Layer

Output Layer:
 Linear Combination 

Xi(t)

gi{x1(t'),x2(t'),...,xN(t')}

Output Layer:
 Linear Combination 

(c) Condition for Xj ̸→ Xi

min
W 1,W 2,b1,b2

T∑
t=n

[Xi(t)− gi(X (t − 1), . . . ,X (t − K ))]2

+λ

N∑
j=1

K∑
n=1

∥(W 1n
:j , . . . ,W 1K

:j )∥2
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Frequency Band specific Connections

Input P-channel EEG data

Normalize each
channel of the Time

Series data

Use VAR-LASSLE to
get the VAR
coefficients

Calculate PDC from
VAR coefficients for
traditional frequency

bands 

Filtering the signal
into traditional

frequency bands

Normalize
and use
cMLP 

Normalize
and use
cMLP

Normalize
and use
cMLP

Normalize
and use
cMLP

Normalize
and use
cMLP

Linear Method Non-linear Method

Final frequency band
specific linear directed

connections

Final frequency band specific non-linear directed
connections

Past studies have shown the
existence of frequency specific
connections in modalities like
EEG, LFP, fMRI.

We utilize a 3rd order Butterworth
filter to decompose each channel
of EEG signal into delta(0.5-4.0
Hz), theta(4.0-8.0 Hz),
alpha(8.0-12.0 Hz), beta(12.0-30.0
Hz), gamma(30.0-50.0 Hz)

Effectively this gives us a total of
5 time-series data for each of the
channels.
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Dealing with Non-Stationarity

Non-stationary behaviour in neuronal time-series data can occur for many
reasons, and there are many sophisticated methods to deal with it.

For our case, we have just simply used a over-lapped time window
approach.

The time window/block size is to be selected with caution, considering
the trade-off between small windows leading to better time-resolution and
poorer cMLP training and vice-versa.
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Experiments Overview

Non-linear mixtures of AR(2) processes are used for the simulations. This
gives us the ground truth to evaluate our scheme.

To check performance under noisy conditions, the noise levels of the
signals are varied using AWGN of SNR: {2 dB,5 dB,10 dB,15 dB,20 dB}.

For all the simulations and implementation on seizure EEG data, a single
hidden layer neural-network is chosen, with number of neurons in hidden
layer = H = 100.

The cMLPs are trained using the hierarchical penalty and proximal
gradient descent with a line search is used for training the networks.

The mean and the median absolute deviations for the AUPR scores for 5
random realizations of each of the setting is reported.
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Overall Non-Linear GC Connectivity

The simulations for the overall NLGC are done in order to get the idea of
what effect the SNR has on the proposed NLGC performance

N = 10 channels non-linear data is generate using 2 sets of AR(2) latent
sources

The non-linearity is induced using a transfer function of the form
τ(x) = a + bx2

The ground truth is set such that there are a total of 18 true connections
among the 90 possible total connections
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Frequency Specific NLGC Connectivity

The ground truth is generated in a similar manner to that of the NLGC,
using a different non-linear transfer function τ(x)

N = 5 channels were used in the simulations, which can be decomposed
into 5 bands each, leading to a total of 25 decomposed signals.

6 actual connections were used in the ground truth data, the figure below
explains the true connectivity patterns:
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Visualizing the Individual AR(2) Processes
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Figure: Latent sources from AR(2) processes
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Table Showing the Simulation Results

Method 2 dB 5 dB 10 dB 15 dB 20 dB

VAR-LASSLE(1) 0.42± 0.01 0.42± 0.02 0.41± 0.01 0.41± 0.01 0.41± 0.01
NLGC(1) 0.62± 0.03 0.72± 0.05 0.84± 0.02 0.82± 0.02 0.8± 0.03
PDC(1) 0.26± 0.03 0.23± 0.00 0.25± 0.03 0.23± 0 0.24± 0

Spec NLGC(1) 0.79± 0.02 0.82± 0.01 0.9± 0.01 0.91± 0.02 0.81± 0.02

VAR-LASSLE(2) 0.41± 0.03 0.41± 0.02 0.41± 0.01 0.42± 0.03 0.44± 0.02
NLGC(2) 0.45± 0.03 0.45± 0.06 0.71± 0.05 0.87± 0.02 0.9± 0.05
PDC(2) 0.32± 0.03 0.26± 0.05 0.24± 0.06 0.14± 0.03 0.11± 0

Spec NLGC(2) 0.63± 0.035 0.68± 0.07 0.8± 0.02 0.9± 0.03 0.92± 0.03

VAR-LASSLE(3) 0.4± 0.02 0.4± 0.03 0.44± 0.02 0.43± 0.02 0.43± 0.02
NLGC(3) 0.36± 0.06 0.42± 0.03 0.75± 0.04 0.88± 0.03 0.93± 0.00
PDC(3) 0.26± 0.05 0.27± 0.05 0.29± 0.03 0.17± 0.04 0.28± 0.10

Spec NLGC(3) 0.65± 0.07 0.74± 0.06 0.91± 0.03 0.98± 0.01 0.99± 0.00
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Analysis of Seizure EEG Data

We apply the NLGC and Spec NLGC method on a 18-channel seizure
EEG data with 50,000 time-points, having a sample rate of 100 Hz.

We used a time-windowed approach considering the quasi-static nature of
EEG signals using a 50% overlap and 2000 time samples in each window.

This gives 500 time-points overlap on each side of the tie window, leading
to a total of 33 GC matrices over the 500 second recording.

In order to understand the network dynamics and visualize the amount of
change in the GC connectivity network, we plotted the Euclidean
Distance(ED(t)) between consecutive GC matrices:

ED(t) =

√∑
all i ,j

| [GC (t)]i ,j − [GC (t − 1)]i ,j |2
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Comparison for Overall Connections

Figure: Comparison between NLGC and VAR-LASSLE

Consecutive dissimilarity between directed connectivity is plotted using
NLGC and traditional VAR-LASSLE, with model lags of K = 1,2,3.

The sudden rise of the consecutive dissimilarity of NLGC method suggests
that our method is able to detect the start of the seizure quite well.

This is not true for the case of VAR method where the rise in consecutive
dissimilarity not much appreciable.
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Visualizing the Estimated NLGC Connections

Figure: Propagation of NLGC connections from left to right hemisphere during seizure
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Comparison for Frequency Specific Connections

Figure: Comparison between Spec NLGC and PDC

Consecutive dissimilarity between directed connectivity in each frequency
band is plotted using Spec NLGC and traditional VAR-LASSLE based
PDC, with model lag of K = 1.

In Spec NLGC, sudden change occurs mostly in the theta, beta and
gamma bands. This is consistent with past studies.

In case of VAR-LASSLE based PDC, we observe sudden change in lower
frequency bands which is inconsistent with past studies.
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Conclusion and Future Work

We have introduced and evaluated performance of a frequency band
specific non-linear Granger causality framework combining Butterworth
filters and component-wise MLP networks with hierarchical penalty.

Simulation results on non-linear data shows the huge improvement on use
of proposed methods over traditional methods.

Implementation on epileptic EEG data provides novel findings about time
evolving connectivity pattern between different EEG channels.

Integration of Spec NLGC with sophisticated approaches to deal with
non-stationarity can be explored in future studies.

We have deployed simulations settings as per need in brain signal analysis,
but implementation of the method proposed in fields like financial data
analysis would also be worth exploring.
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The End
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