InterMix: An Interference-based Data Augmentation And Regularization Technique For Automatic Deep Sound Classification

Ramit Sawhney¹, Atula Tejaswi Neerkaje²

¹Scaler, India & ²Manipal Institute of Technology, India

- Interpolation-based augmentation and regularization techniques like Mixup have achieved state-of-the-art performances on various tasks.
- Building on existing work, we present InterMix, an interference-based data augmentation technique for automatic sound classification.
- We compare InterMix against other mixup strategies and highlight the effectiveness of InterMix that uses an interference formula, while simultaneously providing improved privacy safeguards.

Motivation

- Mixup involves taking a weighted average of two inputs with their corresponding labels.
- While existing methods of mixup based augmentation have shown to be effective, these do not explore the concept of mixup based on the phase difference between sounds, which results in varied sound waves due to interference

The approach: InterMix

How it Works

- InterMix first introduces phase shifts (Φ_1, Φ_2) to two randomly sampled sounds.
- Next, InterMix mixes the representations of these two sounds using an interference-based formula, taking into account the phase difference $(\Phi_1 \Phi_2)$.

$$\widetilde{h}_m = \widetilde{h}^i_m + \widetilde{h}^j_m + 2\sqrt{\widetilde{h}^i_m \widetilde{h}^j_m}\cos\phi$$
 where,

$$\widetilde{h}_{m}^{i} = \frac{pn_{m}}{\sqrt{p^{2} + (1-p)^{2}}}$$
$$\widetilde{h}_{m}^{j} = \frac{(1-p)h_{m}^{j}}{\sqrt{p^{2} + (1-p)^{2}}}$$

Why it Works

- Interference-based mixup provides augmented samples by mixing with a varied phase differences.
- InterMix creates large number of varied training signals effect of sensitive crowd-sourced data while training is minimized.

Performance Comparison

Model	Learning	Error Rates (%)		
		ESC-50	ESC-10	UrbanSound8K
M18 [21]	Standard	31.5±0.5	18.2±0.5	28.8
	BC Learning	26.7±0.1	14.2 ± 0.9	26.5
	Speechmix	24.3±0.2	12.4±0.5	25.1
	InterMix (Ours)	25.4±0.5	12.6±0.5	25.1
SoundNet5 [7]	Standard	33.8±0.2	16.4±0.8	33.3
	BC Learning	27.4±0.3	13.9 ± 0.4	30.2
	Speechmix	25.6±0.2	11.6±0.3	27.4
	InterMix (Ours)	25.1±0.3	10.6±0.3	26.5
EnvNet [24]	Standard	29.2±0.1	12.8±0.4	33.7
	BC Learning	24.1±0.2	11.3±0.6	28.9
	Speechmix	22.5±0.3	9.3±0.4	26.5
	InterMix (Ours)	22.5±0.3	9.1±0.2	26.8
PiczakCNN [22]	Standard	27.6±0.2	13.2±0.4	25.3
	BC Learning	23.1±0.3	9.4±0.4	23.5
	Speechmix	22.1±0.3	8.4±0.2	22.1
	InterMix (Ours)	21.9±0.2	8.3±0.4	21.1
EnvNet-v2 [6]	Standard	25.6±0.3	14.2±0.8	30.9
	BC Learning	18.2 ± 0.2	10.6±0.6	23.4
	Speechmix	16.2 ± 0.3	8.5±0.4	21.6
	InterMix (Ours)	15.8±0.4	8.2±0.4	21.4
EnvNet-v2	Standard	21.2±0.3	10.9±0.6	24.9
+Augmentation	BC Learning	15.1±0.2	8.6±0.1	21.7
	Speechmix	13.1±0.2	7.1±0.1	20.8
	InterMix (Ours)	12.9±0.4	7.2±0.1	20.5
Human		18.7	4.3	

- InterMix generally outperforms existing techniques across the given models and datasets.
- The best-performing model is the augmented EnvNet-v2.
- We observe relative improvements of 14.6%, 16.3%, and 5.5% with respect to BC learning on ESC-50, ESC-10, and UrbanSound8K respectively

Ablation: Impact of p-weighting and hidden space

Variant	Error Rates (%)				
variant	ESC-50	ESC-10	UrbanSound8K		
Vanilla InterMix	13.6	7.9	21.0		
+Hidden Mixup	13.3	7.7	20.8		
+p-weighting	12.9	7.2	20.5		

• We observe significant performance improvements on introducing both hidden space mixing and p-weighting.

• Suggests the effectiveness of mixing in the hidden space, and also the importance of considering the difference in sound pressure levels.

Adversarial Robustness

• InterMix reduces the reliance on sensitive training data by using virtual samples.

- We introduced InterMix, an interference-based learning strategy that uses the concept of phase differences to create varied mixed representations of training signals .
- InterMix achieves competitive performance in comparison to other regularization techniques which use linear interpolation based mixup.
- We further observed InterMix can learn models which are more robust towards adversarial attacks, which improves generalization and has a shielding effect on sensitive training data