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Acquisition✓ Clinical challenge: Intravascular Ultrasound Imaging  (IVUS) 

has a limited number of physical channels which imposes a 

trade-off between image quality and frame-rate.

✓ Current approach: Hand-crafted solutions such as sub-

aperture or sparse array designs are used to decrease 

number of measurements needed for 

reconstruction. More advanced 

solutions are focused on MRI and 

not applicable to IVUS [1].

✓ Hypothesis: An adaptive learned 

algorithm can be deployed to 

leverage the trade-off more efficiently.

✓ Goal: Optimally extract information 

from the acoustic scene by adaptive sampling of 

ultrasound measurements.

✓ Method: A Deep Reinforcement Learning agent (AiVUS) is 

trained to adaptively subsample all measurements needed 

for a single IVUS reconstruction.
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Exploit knowledge of the current frame to provide an optimal acquisition 
sequence for the next reconstruction

SSIM performance on the in-vivo test data for both 
learned (AiVUS) and random sampling strategies.
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THE GOOD STUFF

𝐱 ∈ ℝ𝑁 RF channel data

𝐚 ∈ 0, 1 𝑁 Binary subsample mask

𝐲 = 𝐚⊙ 𝐱 Partial acquisition

𝐬 = 𝑔(𝐲)

Image reconstruction

RESULTS

Six successive wire phantom frames constructed using AiVUS. The agent’s action is displayed in 
the top row, where the circle represents the elements in the transducer array.
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Simulated wire targets

200 frames

Wire phantom

8767 frames

In-vivo

Porcine model

8679 frames

Conclusions

MSE ↓

MAE ↓

PSNR ↑

3.25 1.42 0.067 0.047 0.078 0.070

0.069 0.034 0.169    0.133 0.211 0.200

44.33 49.95 61.59 64.48 59.43 59.90

0.996    0.998   0.308    0.447    0.552    0.578SSIM ↑

Quantitative results comparing a random agent 
(I) with a trained agent (II) (AiVUS).

AiVUS can navigate in controlled IVUS 
environments with high dimensional state and 
action spaces. AiVUS outperforms a random 
agent using a learned acquisition strategy.

Future work

Extend actions beyond subsampling; i.e., 
frequency, pulse duration, etc.
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