

Accelerated Intravascular Ultrasound Imaging using Deep Reinforcement Learning Tristan S.W. Stevens¹, Nishith Chennakeshava¹, Frederik J. de Bruijn², Martin Pekar² and Ruud J.G. van Sloun^{1,2}

¹Eindhoven University of Technology, ²Philips Research. Eindhoven, The Netherlands.

Dataset	Sim.		Phantom		In-vivo	
Agent	I	П	I	П	I	П
MSE ↓	3.25	1.42	0.067	0.047	0.078	0.070
MAE \downarrow	0.069	0.034	0.169	0.133	0.211	0.200
PSNR 个	44.33	49.95	61.59	64.48	59.43	59.90
SSIM 个	0.996	0.998	0.308	0.447	0.552	0.578

(I) with a trained agent (II) (AiVUS).

Future work

Extend actions beyond subsampling; i.e., frequency, pulse duration, etc.

EINDHOVEN

Simulated wire targets 200 frames

Wire phantom 8767 frames

In-vivo Porcine model 8679 frames

AiVUS can navigate in controlled IVUS environments with high dimensional state and action spaces. *AiVUS* outperforms a random agent using a learned acquisition strategy.

Machine Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

t.s.w.stevens@tue.nl