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Problem Definition and Contribution

e Convolutional neural networks (CNNs) rely on extremely large datasets to
perform well on new data.

e We examine the potential for Auxiliary-Classifier GANs (AC-GANSs) as a
’one-stop-shop’ architecture for image classification and generation,
particularly in low data regimes.

e We propose modifications to the typical AC-GAN framework: latent space
sampling scheme and Wasserstein loss with gradient penalty.
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Figure 1: Simple techniques can improve generated image quality even with limited data.
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Generative Adversarial Networks (GANs)’

e Generator (Q) tries
to create samples to
“fool” the
discriminator (D).

e Discriminator takes
turns looking at real
(x) and fake images

(G(2)).
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Figure 2: GAN Training Scheme.
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Background: Auxiliary-Classifier GAN (AC-GAN)

e Auxiliary-Classifier GAN (AC-GAN) builds on the Conditional GAN (C-GAN) in
order to improve image synthesis??.
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Figure 3: AC-GAN Training Scheme.
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Methods: Loss Function

e AC-GAN two-part objective:

LS = E[log P(S = Tealereal))] 7l ]E[logP(S . fake|Xfak:e)} (D)
Lo = ]E[log P(C - C|X7‘eal))] <% E[log P(C — C'Xfake)]a (2)

® Discriminator maximizes LS+ LC. Generator maximizes LC— LS.

® L_becomes gradient-penalty Wasserstein loss* to stabilize simultaneous
image synthesis and classification.

Ls =E[D(2)] — E[D(G(2))] + \® 3)
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The Latent Space

Figure 4: lllustrating the Latent Space.
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Methods: Latent Sampling Scheme

e Truncation trick®: sample latent vector z~p, closer to the mode of the
distribution, resulting in images with greater realism, but low diversity.
e We propose feeding truncated samples into the classifier.

Standard Normal Distribution Truncated Standard Normal Distribution: Threshold = 1.5
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Figure 5: Sampling the latent vector from a truncated
distribution results in higher fidelity images, but lower diversity. 6/ 12



WAC-GAN-GPT

(Wasserstein AC-GAN with Gradient Penalty and Truncation).

x,G(z) x,G(z, ) G(2) G(2)
| | | |
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Figure 6: WAC-GAN-GPT Training Scheme 7112



Results and Discussion

Ablati fudi Train Size Bacslflli;e AC-GAN | WAC-GAN-GP Witﬁfﬁim WAC-GAN-GPT
) ation stuaies on
500 TT5%+15 | 7T76% 1.7 | 7T7.9% 1.5 78.8% £ 1.5 79.8% + 1.5
varying training set sizes 2500 | 835%+1.0|81.2%+2.1| 844%+15 | 84.8%+1.1 | 86.0%+1.2
. 10000 86.4% + 1.5 | 87.3% £ 1.3 | 87.6% +0.9 87.8% + 0.7 88.4% + 1.1
on Fashion MNIST to 20000 | 87.5%+1.3|88.6%+£1.6| 881%+12 | 89.1%+05 | 89.8%+0.9
compare test accuracy. 40000 | 90.3% £0.8 | 90.9% +£0.8 | 91.0% £ 0.4 90.7% £ 0.8 91.3% +0.7
Table 1: Performance on Fashion MNIST test set based on varying training set sizes.
. /
1) Baseline CNN 130
) 0.88 /
2) AC-GAN
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Figure 7: Graphical representation of Table 1. 8/12



Results and Discussion

e T-SNE on CNN embeddings for real samples, AC-GAN samples, and WAC-GAN-GPT samples
based on Fashion MNIST.

a) CNN b) AC-GAN ¢) WAC-GAN-GPT
Figure 8: T-SNE visualizations on Fashion MNIST samples.
e Average distance to center of class cluster: 7.83, 5.16, and 3.94 for the CNN, AC-GAN, and
WAC-GAN-GPT, respectively.
e Standard deviations: 4.71, 2.17, and 1.76.
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Results and Discussion

e Are low diversity but more representative images helpful?
e Find optimal truncation factor for each training set size experiment.
e Bilevel optimization: find optimal truncation factor r while optimizing GAN:

arg min CE(f(G(z,,¢)),¢)) (4)

2~ N(0,1) (5)
zr = sgn(z) - min(|z|, ) (6)
Training Size | 500 | 2500 | 10000 | 20000 | 40000
T | 0.89+0.14 | 1.05+0.12 | 1.20+£0.13 | 1.49+0.08 | 1.63 £ 0.05

Table 2: Optimal Truncation Factors for various training set sizes.
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Results and Discussion

e Compare CIFAR10 test accuracy, and then CIFAR10.1v6° to
compare domain generalizability.

| AlexNet AC-GAN WAC-GAN-GPT

CIFAR 10 70.5% £ 0.5 70.1% £ 0.8 72.9% +£ 0.7
CIFAR 10.1v6 53.5% £+ 1.0 56.4% + 1.1 59.3% + 0.6

Table 3: CIFAR test performance and generalizability.
e COVID-19 Detection on 128x128 chest X-rays.

CNN AC-GAN WAC-GAN-GPT
COVID-19 | 94.0% + 1.5 95.5% + 0.5 97.6% + 0.9

Table 4: COVID-19 test performance.
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Summary and Conclusion

e AC-GANs can achieve competitive performance with standard CNNs.
o Particular performance gains in lower data regimes.

e Modifications: Wasserstein-GP + truncation.

e Future work: more diverse datasets, higher resolution images.

e More advanced techniques: adaptive discriminator augmentation or progressive
growing.”®

Dress Shirt Coat

Figure 9: Naively applying data augmentation transformations leaks through to generated images. 121
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