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EXPERIMENTAL RESULTS

Our method can learn sufficient semantic information from images in small-batch cases.

Self-supervised learning based on data augmentation 

Accuracy degradation in small-batch cases

➢ Phenomenon: The accuracy of SimCLR and BYOL 

drastically decreases as the batch size decreases.

➢ Reason: When batch size decreases, these methods 

can not learn enough semantic information from 

limited views.

➢ Problem: Some real-world images, such as medical 

and remote sensing images, are high-resolution and 

can only train in small-batch cases.

High-accuracy self-supervised learning in small-batch cases is needed.
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➢ Self-supervised learning is a means for pre-training 

networks to learn good representations without human 

providing labeled data.

➢ Self-supervised learning based on data augmentation 

is the process of training a classifier to distinguish 

between “similar” and “dissimilar” input data.

➢ SimCLR and BYOL are two state-of-the-art self-

supervised learning methods with this scheme.

EMA: exponential moving average

SG: stop gradient

➢ Different from BYOL which uses the Siamese network, we propose the triplet network 

combined with a triple-view loss for learning better representations with small batch sizes.

➢ Novelty: The addition of augmented views can increase mutual information and encourage 

a more transformation-invariant representation in small-batch cases.

➢ We confirm that our method can drastically outperform state-of-the-art self-supervised 

learning methods on several datasets in small-batch cases.

EXPERIMENTAL RESULTS
Dataset

Settings

Self-supervised learning:

➢ Encoder: ResNet50

➢ MLP hidden size: 512

➢ MLP projection size: 128

➢ Batch size: 32, 64, 128

➢ Moving average: 0.996

➢ Training epoch: 80

Comparison methods

Verified that our method was effective for transfer learning.

Linear evaluation results with different batch sizes

Verified that our method was effective in small-batch cases.

Transfer learning results on different datasets (b128)

Fine-tuning results with different numbers of labels (b128)

Eight benchmark datasets.

➢ MNIST

➢ FashionMNIST

➢ KMNIST

➢ USPS

➢ SVHN

➢ CIFAR-10

➢ CIFAR-100

➢ STL-10

Six state-of-the-art (SOTA) self-supervised learning methods and two supervised

learning methods.

➢ Cross, BYOL, SimSiam, PIRL-Jigsaw, PIRL-Rotation, SimCLR

➢ Supervised transfer learning from ImageNet, Supervised learning from scratch

Verified that our method was effective even using few training data.
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