Improved Language Identification Through Cross-Lingual Self-Supervised Learning

<u>Andros Tjandra</u>, Diptanu Gon Choudhury, Frank Zhang, Kritika Singh, Alexis Conneau, Alexei Baevski, Assaf Sela, Yatharth Saraf, Michael Auli

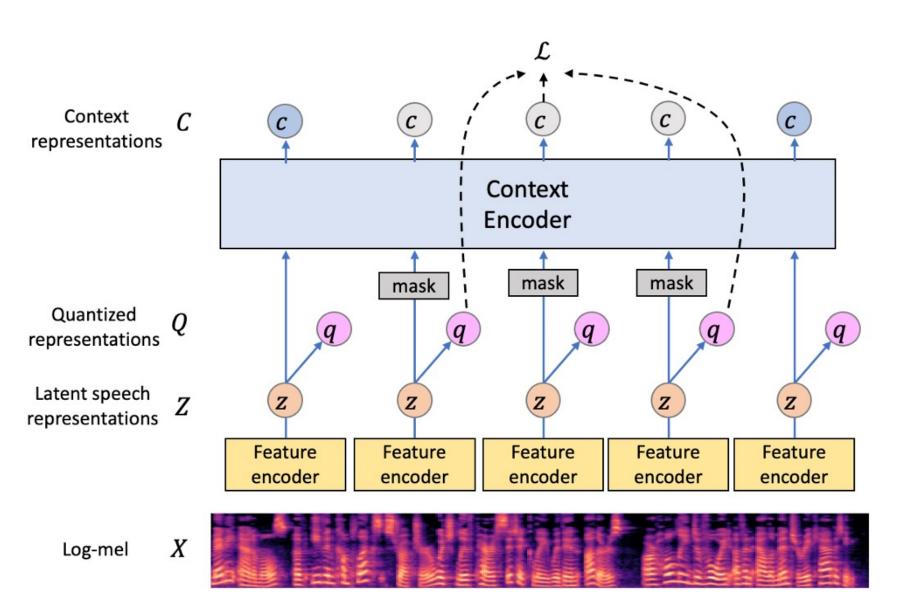
Outline

- Background 1.
- Log-Mel Wav2Vec 2.
- **Cross-lingual Speech Representation (XLSR)** 3.
- LID Finetuning 4.
- Experimental setup 5.
- Results 6.
- 7. Conclusion

Background

- Language identification (LID) predicts which language is being spoken given a speech utterance and routes the speech to the correct ASR service.
- Problem & prior works:
 - Modern LID are trained with large amounts of labeled data.
 - Self-supervised learning (e.g., Wav2Vec 2.0) can leverage unlabeled data.
 - Prior study [1] shows Wav2Vec 2.0 trained on English data could improve LID.
- Proposed:
 - Extend the study using cross-lingual self-supervised (XLSR) to improve LID accuracy.
 - Explore different 1) content aggregation strategies, 2) pruning layer size.

Wav2Vec 2.0



- trained with audio only.
- It consists of 3 main components

 - representation Z
 - Quantizer: learn contextualized representation Q from continuous Z
 - Context encoder: learn high-level speech representation
- Loss function:

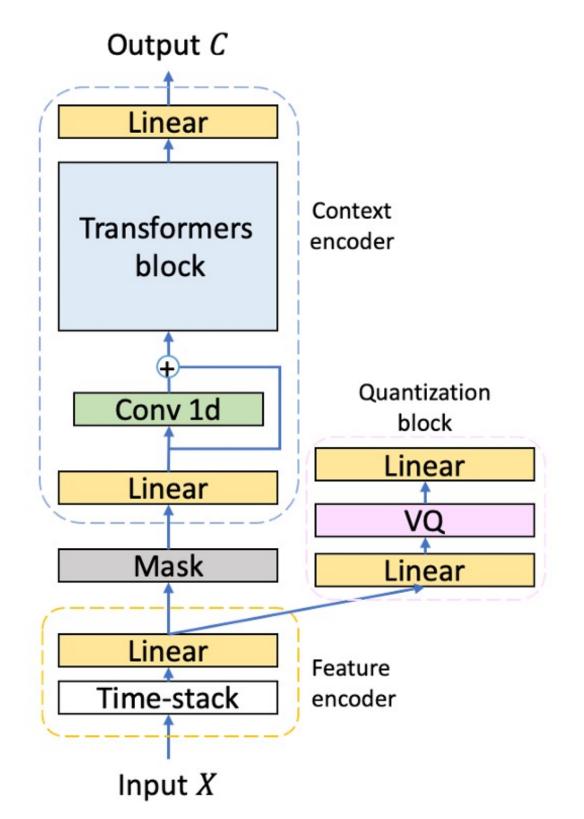
 $\mathcal{L}_m = -$

• Wav2Vec 2.0 is a self-supervised learning

- Feature encoder: extract latent speech

$$-\log \frac{\exp(sim(\mathbf{c}_t, \mathbf{q}_t)/\kappa)}{\sum_{\mathbf{\tilde{q}}\sim\mathbf{Q}_t}\exp(sim(\mathbf{c}_t, \mathbf{\tilde{q}})/\kappa)}$$

Log-Mel Wav2Vec



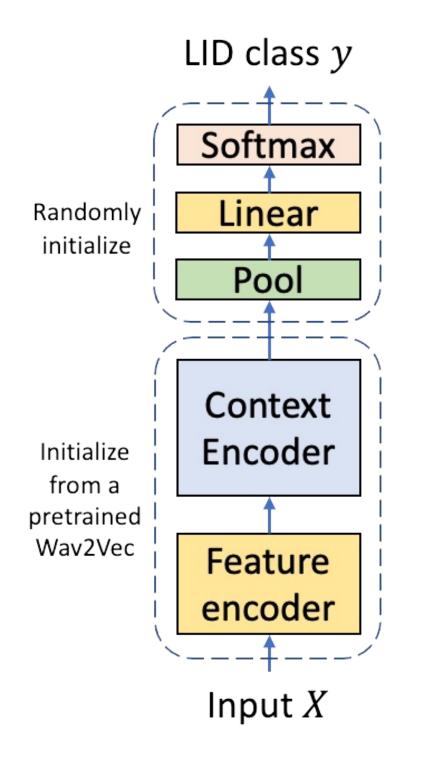
- feature into log-mel spectrogram.
- We also modify the Wav2Vec architecture by replacing stack of 1D convolution layers with timestacking + a linear layer.
- By using this modification, we could reduce the memory usage and improve running time to support large-scale training more efficiently.

Instead of using raw-waveform, we replace the input

Cross-lingual Speech Representation (XLSR)

- XLSR is a multilingual Wav2Vec 2.0, trained altogether with various unlabeled speech from different languages.
- In this paper, since we don't have any language metadata on the unlabeled speech, we train our XLSR without any data rebalancing.

LID Finetuning



- We initialized the bottom part of the LID classifier with a pre-trained Wav2Vec.
- We explored several pooling operations such as:
 - Mean pooling $o = \sum_{t=1}^{T} c_t / T$

- Std. dev pooling
$$o = \sqrt{\frac{1}{T}\sum_{t=1}^{T} (c_t - \mu)^2}$$

Self-attention pooling

$$o = \sum_{t=1}^{T} softmax \Big($$

- Concat [CLS] token in the 1st index and set $o = c_1$
- Loss criterion: cross-entropy

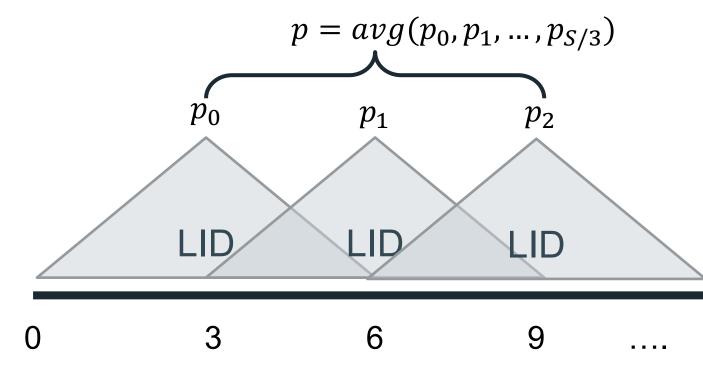
 $\left(w_2 GELU\left(W_1 c^{\mathrm{T}}\right)\right) c_t$

Experimental Setup

- Pre-training XLSR
 - We are using 6.3 million hours unlabeled speech with different languages and conditions (e.g., clean, noisy, etc).
 - Log-mel Wav2Vec configuration:
 - Feature encoder: 4x time-stack stride + linear layer
 - Context encoder: 24 Transformers layer (d_in = 1024, d_ffn=4096)
 - Quantization module: Gumbel VQ (320 codebooks, 2 groups)
- Finetuning
 - We finetune with LID dataset consisted of 26 languages

Experimental Setup (cont.)

- Evaluation
 - Inference with 6 seconds audio & 3 seconds step size and we average the language probability across multiple segments to predict the class.



 $p_{S/3}$

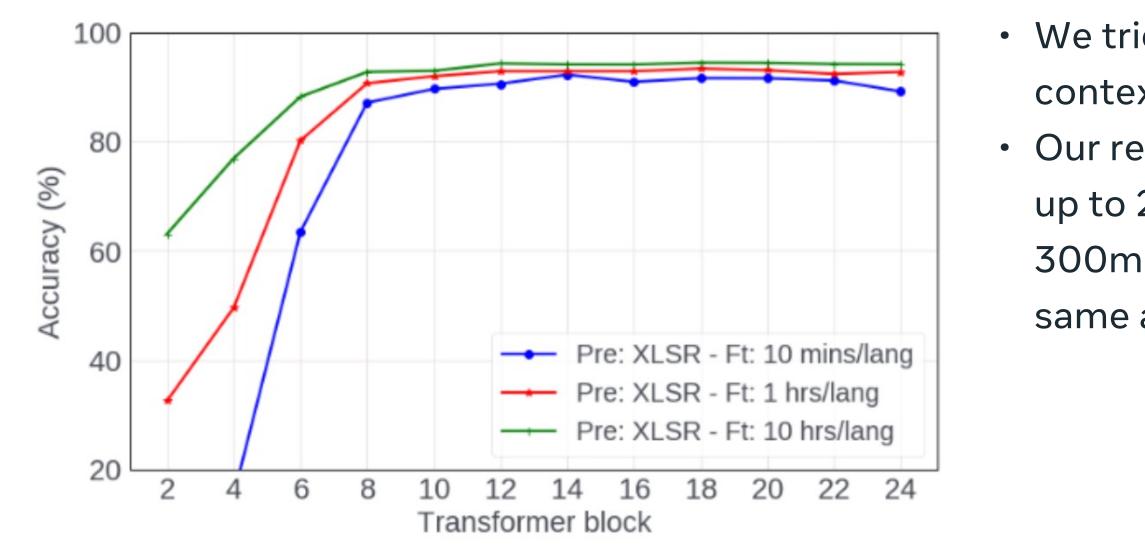
S

Exp 1: LID accuracy in different setups

Lbl.	Pre-	Test Accuracy (%)					
/ lang	training	0-6s	6-18s	18-∞s	Overall		
10 min	None	7.1	9.5	10.6	9.6		
	w2v2 En	71.3	73.1	76.1	74.2		
	XLSR	85.4	88.8	90.8	89.2		
1 hour	None	20.2	25.2	29.5	26.5		
	w2v2 En	79.3	85.9	89.3	86.5		
	XLSR	87.2	92.5	94.8	92.8		
10 hours	None	48.3	61.9	71.8	64.5		
	w2v2 En	86.8	93.3	95.6	93.4		
	XLSR	88.2	94.3	96.1	94.2		
100 hours	None	72.2	84.9	90.7	86.7		
	w2v2 En	89.5	95.7	97.3	95.5		
	XLSR	90.3	95.9	97.2	95.7		

- We compare 3 different models: 1) without pre-training, 2) pre-trained with Wav2Vec English data, 3) XLSR
- We also compare the accuracy between different amount of labeled data, test data lengths.
- XLSR shows best performance overall.

Exp 2: Pruning context Transformers layers



- We tried to prune the layers from
- context encoders.
- Our results shows that we could prune
- up to 2/3 layers (reduce params from
- 300m -> 100m) and still maintains the same accuracy.

Exp 3: Pooling strategy

Aggregation	Accuracy (%)					
strategy	0-6s	6-18s	18-∞s	Overall		
Max	86.6	92.7	94.8	92.8		
Mean+Max+Min	88.1	92.9	94.7	93.0		
Mean+Max	88.5	93.1	94.8	93.2		
Mean+Std	84.2	90.9	93.4	91.1		
[CLS] Token	85.4	91.4	93.9	91.7		
Self Attention	87.0	92.0	94.1	92.2		

We tried different pooling on 1hr/lang setup. Mean+Max pooling shows the best accuracy despite its simplicity.

Conclusion

- We showed that cross-lingual pre-trained model are particularly effective for low-resource setups, especially when little labeled data is available.
- Using only 10 minutes per languages, an XLSR-based LID could achieve 89.2% on 26 languages setup.
- From our pruning study, we could prune 2/3 of context encoder layers and still maintain its accuracy.
- Simple pooling strategy such as max+mean works well in this system.