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(*) T. Cover and J. Thomas, “Elements of Information Theory”, Wiley, NY, 1991.
(**) H. Chen, K-N. Ngan, “Recent advances in rate control for video coding,” 
Signal Processing: Image Communication, vol. 22, no. 1, 2007, pp 19-38

Rate control module in video coding
▸ A unit ensuring that overall bitrate approaching target rate R

− achieving best quality (or minimum distortion D)
− within certain constraints (decode buffer size, max rate, etc.)

▸ It does it by adjusting quantization step sizes in the bitstream:
− Pictures/slices = have “quant” or “QP” parameter in headers
− Macroblocks/CTUs = allow transmission of “Delta QPs”

▸ Two levels of rate adaptations:
− Frame-level bit allocation and QP derivation, and
− Macroblock or CTU-level bit allocation and DeltaQP derivation

Models used to implement rate control methods
▸ Typically influenced by information-theory concepts (*):

− rate-distortion characteristic of a source (e.g. RD of Gaussian source)
− operational rate-distortion characteristic, which is expected to be 

similar to an idealized rate-distortion curve

Questions
▸ When we transmit QPs do we still solve the classic “quantization problem”?
▸ How does transmission of QPs affect the performance of such codes?
▸ Does the use of classic R(D) models still appropriate in this application?

Motivational example

𝐷𝐷∗ = min
𝑅𝑅(𝑄𝑄𝑄𝑄)≤𝑅𝑅∗`

+buffer constraints

𝐷𝐷(𝑄𝑄𝑄𝑄)

QP
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Some known facts
Uniform quantization 

▸ Effectively a map: 𝑥𝑥 → 𝑥𝑥Δ

− 𝑥𝑥 – real-valued random variable, 𝑥𝑥 ~ 𝑝𝑝(𝑥𝑥),  ℎ 𝑥𝑥 = −∫𝑝𝑝 𝑥𝑥 log𝑝𝑝 𝑥𝑥 𝑑𝑑𝑑𝑑
− 𝑥𝑥Δ – quantized output, 𝑥𝑥Δ ~ 𝑃𝑃 𝑥𝑥Δ , 𝐻𝐻 𝑥𝑥Δ = −∑𝑖𝑖 𝑃𝑃 𝑥𝑥𝑖𝑖Δ log𝑃𝑃 𝑥𝑥𝑖𝑖Δ

− Δ – step size
▸ The simplest example: xΔ = Δ ⋅ 𝑥𝑥/Δ+ 1/2 (uniform mid-tread quantizer)

Performance in high-fidelity regime 
▸ If 𝑝𝑝(𝑥𝑥) is Riemann-integrable, then with Δ → 0, the following holds (*):

𝐻𝐻 𝑥𝑥Δ → − log Δ + ℎ 𝑥𝑥

Operational rate-distortion function of uniform quantizer
▸ 𝑅𝑅 – encoding bitrate, 𝑅𝑅 ≥ 𝐻𝐻 𝑥𝑥Δ

▸ 𝐷𝐷∞– ℓ∞- type distortion: 
𝐷𝐷∞ = max

𝑥𝑥
|𝑥𝑥 − 𝑥𝑥Δ(𝑥𝑥)| = Δ/2

▸ Then, with Δ,𝐷𝐷∞ → 0:
𝑅𝑅 → − log 𝐷𝐷∞ + ℎ 𝑥𝑥 + O(1)

▸ The − log 𝐷𝐷∞ term is the most important. 

− log 𝐷𝐷∞

(*) T. Cover and J. Thomas, “Elements of Information 
Theory”, Wiley, NY, 1991.
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Quantizer
▸ Input: 𝑥𝑥1, … . , 𝑥𝑥𝑛𝑛 – samples from variable x;  quantized output: 𝑥𝑥1Δ, … . , 𝑥𝑥𝑛𝑛Δ

▸ Step size (𝑞𝑞 – integer, 𝐶𝐶 – constant):
Δ q = 𝐶𝐶/𝑞𝑞

Block code
▸ Send parameter q, encoded any monotonic code for integers
▸ Send quantized samples 𝑥𝑥1Δ, … . , 𝑥𝑥𝑛𝑛Δ , encoded by arithmetic codes for 𝑥𝑥Δ ~𝑃𝑃(𝑥𝑥Δ)
▸ Bitstream : 

< 𝑞𝑞 >< 𝑥𝑥1Δ >, … . , < 𝑥𝑥𝑛𝑛Δ >

Operational rate-distortion function
▸ n – block length
▸ 𝐷𝐷∞ = max

𝑖𝑖
|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖Δ| ≤ Δ/2 – distortion

▸ 𝑅𝑅𝑛𝑛 – per-sample bitrate:

𝑅𝑅𝑛𝑛 >
1
𝑛𝑛

log 𝑞𝑞 + 𝐻𝐻 𝑥𝑥Δ
Δ→0

− 1 +
1
𝑛𝑛

log 𝐷𝐷𝑛𝑛,∞ + ℎ 𝑥𝑥 + O 1

▸ In comparison with regular uniform quantizer, we observe that the transmission of 

Δ 𝑞𝑞 increases the bitrate of a block code by a factor of 1 + 1
𝑛𝑛

− log 𝐷𝐷∞

− 1 +
1
𝑛𝑛

log 𝐷𝐷∞

Code with embedded step size
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A related mathematical problem
Consider now the following problem:

▸ Given n irrational numbers: 𝜉𝜉1, … . , 𝜉𝜉𝑛𝑛, find integers 𝑝𝑝1, … . ,𝑝𝑝𝑛𝑛 and 𝑞𝑞, such that
𝑝𝑝1
𝑞𝑞
≈ 𝜉𝜉1, … ,

𝑝𝑝𝑛𝑛
𝑞𝑞
≈ 𝜉𝜉𝑛𝑛

▸ This problem is remarkably old and known in mathematics as simultaneous 
Diophantine approximations (named after Diophantus of Alexandria, 200s BC)

Performance of Diophantine approximations:
▸ There exists infinitely many integers 𝑝𝑝1, … . ,𝑝𝑝𝑛𝑛 and 𝑞𝑞, such that (*):

max
i

𝜉𝜉𝑖𝑖 − 𝑝𝑝𝑖𝑖/𝑞𝑞 <
1

1 + 1/𝑛𝑛
𝑞𝑞− 1+1/𝑛𝑛

▸ This is a significant improvement over a trivial bound: 
max
i

𝜉𝜉𝑖𝑖 − 𝑝𝑝𝑖𝑖/𝑞𝑞 ≤ 0.5 𝑞𝑞−1

Connection to quantization:
▸ Given a block 𝑥𝑥1, … . , 𝑥𝑥𝑛𝑛, and quantizer Δ q = 𝐶𝐶/𝑞𝑞, we see that 𝜉𝜉𝑖𝑖 = 𝑥𝑥𝑖𝑖

𝐶𝐶
, 𝑖𝑖 = 1, … ,𝑛𝑛

maps quantizer design to the Diophantine approximation problem!

▸ However, in earlier analysis, we assumed that 𝐷𝐷∞ = max
𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖Δ ≤ 1
2
Δ = 1

2
𝐶𝐶/𝑞𝑞, 

which is a reasonable bound when we don’t know much about sample values or q
▸ But if we know the samples, and selectively choose q, then the existence of much 

higher accuracy approximations makes a difference!
(*) J. Cassels, “An Introduction to Diophantine 
Approximations”,  Cambridge University Press, 1957.

Example: 
▸ 𝜉𝜉1 = 𝜋𝜋 ≈ 3.14159 …
▸ 𝜉𝜉2 = 𝑒𝑒 ≈ 2.7182 …
▸ Best approximations with q<100:

𝜋𝜋 ≈ 22/7
𝑒𝑒 ≈ 19/7

𝜋𝜋 ≈ 245/78
𝑒𝑒 ≈ 212/78

𝜋𝜋 ≈ 157/50
𝑒𝑒 ≈ 136/50

The accuracy of Diophantine 
approximations can be much higher 
than 0.5/q bound suggests !!
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Achievable performance
Main result

▸ Theorem 1. Given a block of samples 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, there exist infinitely many values of quantization parameter q, such that the 
resulting rate-distortion performance of a block code with embedded quantization step size parameter satisfies:

𝑅𝑅𝑛𝑛 ≤ − log 𝐷𝐷∞ + ℎ 𝑥𝑥 + O 1

This inequality holds in high-fidelity (Δ(𝑞𝑞) → 0) regime.

Proof
▸ The result follows by applying accuracy limit for Diophantine approximations: 𝐷𝐷∞ = max

𝑖𝑖
|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖Δ| ≤ 𝐶𝐶 1

1+1/𝑛𝑛
𝑞𝑞− 1+1/𝑛𝑛

Discussion
▸ Compared to our earlier estimate: 𝑅𝑅𝑛𝑛 ≥ − 1 + 1

𝑛𝑛
log 𝐷𝐷∞ + ⋯ , this means that the leading 1 + 1

𝑛𝑛
factor can be avoided!

▸ This means, that block codes with embedded quantization step size information, may, theoretically, be as efficient as codes that
do not transmit such information!

▸ Good news for practical applications! But how to design such codes?
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Example code construction
Input

▸ Source: x – random variable, x ∈ 0, 𝑥𝑥max , uniformly distributed, 𝑥𝑥ma𝑥𝑥 = 100
▸ Input samples: 𝑥𝑥1 = 𝜋𝜋 ≈ 3.14159 … , 𝑥𝑥2 = 𝑒𝑒 ≈ 2.7182 …

Code construction
▸ Find 𝑝𝑝1,𝑝𝑝2, and 𝑞𝑞 such that: 𝑥𝑥1 ≈ 𝑝𝑝1/𝑞𝑞,  𝑥𝑥2 ≈ 𝑝𝑝2/𝑞𝑞
▸ Send 𝑞𝑞 by using Levenstein code
▸ Send 𝑝𝑝1 and 𝑝𝑝2 by binary codes using log2 𝑞𝑞 ⋅ 𝑥𝑥max bits 

R/D performance (q=1..100):

𝒒𝒒 𝒑𝒑𝟏𝟏 𝒑𝒑𝟐𝟐 < 𝒒𝒒 > < 𝒑𝒑𝟏𝟏 > < 𝒑𝒑𝟐𝟐 > 𝑹𝑹𝒏𝒏 [bits] 𝑫𝑫∞ 𝟎𝟎.𝟓𝟓/𝒒𝒒
2 6 5 1100 00000110 00000101 4/2+8=10 0.21828 0.25000
3 9 8 1101 000001001 000001000 4/2+9=11 0.14159 0.16666
5 16 14 1110001 000010000 000001110 7/2+9=12.5 0.08171 0.10000
7 22 19 1110011 0000010110 0000010011 7/2+10= 13.5 0.00399 0.07142
36 113 98 1111000100100 000001110001 0000110 0010 13/2+12=18.5 0.00394 0.01388
57 179 155 1111000111001 0000010110011 0000010011011 13/2+13=19.5 0.00124 0.00877
78 245 212 11110010001110 0000011110101 0000011010100 14/2+13=20 0.00056 0.00641

Observations:
▸ By varying q, the RD points can be all over the place.
▸ There are few points q for which RD performance is much 

better. Their existence is predicted by Diophantine theory. 
▸ The bound for RD model obtained earlier misses most of 

such good operating points! 

Example codes:
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Results
▸ Discovered connection between uniform quantization and Diophantine 

approximation problem 
▸ Showed that block codes that transmit step sizes may (in theory) be asymptotically 

as efficient as codes that do not carry such information
▸ Showed that simple RD models don’t predict behavior such codes well

Applications & consequences
▸ The discovered phenomena may help with improving designs of rate control 

algorithms and performance of encoders in general
▸ But such improvements may require much more compute power! 

− The problem of finding best Diophantine approximations is known to be NP-
complete. Related discussion and results can be found in (*). 

− Finding good near-optimal solutions is a non-trivial problem!
▸ More work... More fun!

Conclusions

(*) M. Groetschel, L. Lovacz, and A. Schrijver, 
“Geometric algorithms and combinatorial 
optimization”, Springer, Berlin, 1988.
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