
Self-Stabilized Parameters are Local Learning Rate Adjustment

The self-stabilizing parameter are a scalar parameter that 
augments each matrix parameter of the DNN model.

Compare how this changes the derivation of parameter update 
equations, both without (left) and with (right) the self-
stabilizing parameter.
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If the gradient of the objective function � with respect to � is 
known, then the gradient of � with respect to the parameter �
is given by:
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The parameter update equation multiplies this gradient by a 
learning rate �.
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With � = 0, the two updates are equivalent. Other values of �
act as a local modification of the learning rate applied to 
updating the parameter �.
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Introduction

Deep neural network models have 
been successfully applied to many 
tasks such as image labeling and 
speech recognition. 

Mini-batch stochastic gradient 
descent is the most prevalent method 
for training these models. 

A critical part of successfully applying  
Mini-batch SGD
• choosing appropriate initial values
• local and global learning rate 

scheduling algorithms.

In this paper, we present a method 
which:
• Makes training converge faster,
• Makes training less sensitive to 

global learning rate, and
• Produces better models.

Learning Rate Scheduling

The goal of training a DNN is to update the set of parameters 
in order to optimize objective function �. Gradient descent 
algorithms accomplish this by following steps against the 
gradient’s direction. The size of the step is controlled by the 
learning rate. In practice, a good learning rate schedule can 
result in faster convergence to a better local optimum.

Global learning rates are applied to all parameters
• Exponential or power scheduling
• Algorithmic scheduling

Local learning rates are customized for each parameter
• Natural Gradient
• Natural Newton
• AdaGrad and DeltaGrad

These methods introduce hyper-parameters that should be 
tuned on development data to give the best performance.

Conclusion

The self-stabilizing parameters control the activation 
distribution throughout training. In our paper, we 
show these parameter interact positively with 
stochastic gradient training, yielding models that:

• Are less sensitive to initial learning rate
• Are less sensitive to parameter initialization
• Are still compatible with learning rate scheduling 

algorithms, and
• Converge more quickly to better local optimum.
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Self-Stabilized Parameter Update

What controls the stabilizing parameter? Observe the 
derivation of its update equation.
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The gradient with respect to the input is given by,
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And the gradient with respect to � is given by,
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Yielding the update rule,
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Clearly, when increasing the magnitude of � will 
improve the objective function, � will increase.

Self 
Stabilizer

Learning
Rate 
Scheduler

Initial 
Learning 
Rate

Training 
Frame 
Error

Validation 
Frame 
Error

Validation 
Word Error

No CNTK-AA 0.1 53.1% 57.3% 40.2%

No CNTK-AA 0.8 43.5% 51.0% 32.4%

Yes CNTK-AA 0.1 38.7% 49.8% 32.5%

Yes CNTK-AA 0.8 39.8% 49.7% 32.0%

No AdaDelta 0.8 44.6% 52.0% 33.5%

Yes AdaDelta 0.8 39.2% 51.3% 32.2%

Yes None 0.1 36.3% 51.0% 32.1%

Yes None 0.1 37.3% 50.7% 31.8%The self-stabilizing parameter adapts to different global 
learning rates.
• The top figure uses a learning rate 1/8 the value of the 

learning rate in the middle figure. 
• The learned parameters, which effectively adjust the 

local learning rate, are two to three times bigger.

The self-stabilizing parameter adopts a diminishing     
learning rate schedule over time.
• The top and bottom figures use the same initial learning 

rate. 
• The top figure uses the CNTK-AA algorithm to decrease 

the global learning rate over time.
• The bottom figure holds the global learning rate fixed, 

but the self-stabilizing parameters decrease over time.

Results on AMI Using Various Training Methods

• SS makes training more robust to initial learning 
rate. (lines 1+2, lines 3+4).

• SS Improves training for CNTK-AA or AdaDelta 
(lines 1+3, lines 2+4, lines 5+6).

• SS gives nearly the best results, even without a 
global learning rate schedule (line 7)

• CNTK-AA is an auto-adjust learning rate algorithm 
"adjust after epoch" , which  reduces global 
learning rate  by some factor if the cross entropy 
objective degrades on validation set.

• L2 regularization technique on parameters used 
in last experiments to reduce overtraining to  
training data. 

• The overtraining is no longer a problem on large 
training sets (e.g. SWBD + Fisher )
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Gradients in the 
direction of � decrease 
the �.

Gradients opposing 
the direction of �
increase the �.

Process is stable when 
gradients and � are 
uncorrelated.

The self-stabilizing 
parameter produces better 
models, more quickly.

The figure on the right shows 
training cross entropy 
dropping more quickly, and 
producing a better final value.

Switchboard + Fisher training 
data with 9000 class labels, 
six layer Sigmoid DNN.


