A STUDY ON DATA-DRIVEN PROBYBILITY ESTIMATOR DESIGN FOR VIDEO CODING

Heiner Kirchhoffer, Christian Rudat, Michael Schäfer, Jonathan Pfaff, Heiko Schwarz, Detlev Marpe, and Thomas Wiegand

Overview

- The Enhanced Compression Model (ECM) version 3 is employed to study data-driven approaches for optimizing the probability estimator of its entropy coding stage
- ECM is based on the Versatile Video Coding (VVC) standard but includes additional coding tools that increase the compression efficiency
- In ECM, the probability estimator of each context model uses a weighted sum of two hypotheses with different associated adaptation rates
- This paper studies four alternative approaches in order to increase the compression efficiency

Review of the Probability Estimator of ECM

- For each context model, two probability estimates $p_0(t)$ and $p_1(t)$ are maintained
- The probability estimate for arithmetic coding is the weighted sum

 $p(t) = \left(p_0(t) + p_1(t)\right)/2$

After encoding (or decoding) a binary symbol (bin) x(t), both estimates are updated according to the recursive equation

 $p_i(t+1) = \alpha_i \cdot p_i(t) + (1 - \alpha_i) \cdot x(t)$

- A predefined value is used as initial probability estimate $p_i(1)$
- The adaptation parameter $\alpha_i = 1 2^{-r_i}$ controls the adaptation speed
- The inertia parameters r_i may be integers ranging from 2 to 9
- For each context model, predefined values are used for the inertia parameters

Data-driven hypotheses weighting (DHW)

- The number of hypotheses of the ECM estimator is increased from 2 to 14
- Fixed inertia parameters r_i in the range $1 \le r_i \le 14$ are used
- The probability estimate for arithmetic coding is the weighted sum

 $p_{DHW}(t) = \sum_{i=1}^{14} w_i \cdot p_i(t)$

The initial probability estimate p(1) and the weights w_i are derived in a data-driven way

Data-driven weighting of latest bins (DWLB)

- The sequence of bins x(t) is extended to an infinite sequence
 - $\widetilde{x}(t) = \begin{cases} x(t) & \text{if } t > 0, \\ p(1) & \text{otherwise.} \end{cases}$
- The probability estimate of DWLB for arithmetic coding is given as:

 $p_{DWLB}(t+1) = \sum_{i=0}^{D} \tilde{x}(t-i) \cdot \phi_i$

- Parameter D corresponds to the number of previously observed bins
- The initial probability estimate p(1) and the weights ϕ_i are derived in a data-driven way
- The probability estimator of ECM can be expressed as a DWLB estimator if $D \rightarrow \infty$
- Simulations are conducted using D = 2048 which turns out to be sufficiently large

Data-driven training of adaptation parameters (DTA)

The probability estimate for arithmetic coding is the weighted sum of *B* hypotheses:

$$p_{DTA}(t) = \sum_{i=1}^{B} w_i \cdot p_i(t) = \sum_{i=1}^{B} w_i \cdot (\alpha_i \cdot p_i(t) + (1 - \alpha_i) \cdot x(t))$$

- In comparison to DHW, adaptation parameters α_i can be arbitrary real numbers (i.e., they are not restricted to stem from a fixed set of 14 values)
- The initial probability estimate p(1), the adaptation parameters α_i , and associated weights w_i are trained in a data-driven way
- Simulations are conducted using two (B = 2) or three (B = 3) hypotheses

Neural network-based weighting of latest bins (NNWLB)

- The DHW estimator $p_{DHW}(t)$ is combined with an estimator $p_{NN}(t)$ based on a 2-layer fully-connected neural network
- The probability estimate for arithmetic coding is given as weighted sum

 $p_{NNWLB}(t) = \beta \cdot p_{DHW}(t) + (1 - \beta) \cdot p_{NN}(t)$

- The neural network uses the latest 200 bins as input
- The parameters of the DHW estimator, the parameter β , and the parameters of the neural network are derived in a data-driven way
- Two configurations are tested:
 - NNWLB_10: Uses 10 activations per hidden layer
 - NNWLB_100: Uses 100 activations per hidden layer

Experimental results

- The data set for data-driven optimization/neural network training is disjoint from the evaluation dataset
- Coding gains (Bjøntegaard delta rates based on $PSNR = 6 \cdot Y_{PSNR} + U_{PSNR} + V_{PSNR}$) relative to ECM:

Architecture (number of trainable parameters)	Transcoding			Estimation		
				and coding		
	AI	RA	LB	AI	RA	LB
DHW (32)	-0.07%	-0.13%	-0.16%	-0.10%	-0.19%	-0.32%
DWLB (2053)	-0.08%	-0.14%	-0.17%	-0.11%	-0.22%	-0.35%
DTA_2 (7)	-0.06%	-0.11%	-0.14%	-0.06%	-0.16%	-0.22%
$DTA_{-3} (9)$	-0.07%	-0.12%	-0.15%	-0.08%	-0.18%	-0.28%
NNWLB_10 (2184)	-0.10%	-0.17%	-0.19%	-0.13%		
NNWLB_100 (30534)	-0.11%	-0.18%	-0.20%	-0.14%		

Results for NNWLB 10/100 are not available for RA and LB due to high encoding runtimes.

