



# Lossless Point Cloud Attribute Compression Using Cross-scale, Cross-group, and Cross-color Prediction

Jianqiang Wang<sup>1</sup>, Dandan Ding<sup>2</sup>, Zhan Ma<sup>1</sup> <sup>1</sup>Nanjing University, <sup>2</sup>Hangzhou Normal University

### Introduction

#### **D** Topic

• Lossless Point Cloud Attribute Compression (PCAC)

#### □ Method

- Multiscale Sparse Tensor based hierarchical structure
- Neural network-based attribute probability prediction across layers
- Cross-scale, Cross-group, and Cross-color Prediction

#### **Contributions**

• The first lightweight and generalized lossless PCAC approach that outperforms MPEG G-PCC.

# **Related Works: Point Cloud Attribute Compression (PCAC)**

#### **Rules-based solutions**

- Region-Adaptive Hierarchical Transform (RAHT)
- Predicting and Lifting Transforms
- Graph Fourier Transform

Rules-based solutions (MPEG G-PCC) has state-of-the-art PCAC efficiency.

#### **D** Learning-based approaches

• SparsePCAC[1], DeepPCAC[2], 3DAC[3],[4],[5] etc...

Most existing learning-based methods only support lossy coding, and are still inferior to MPEG G-PCC.

<sup>[1].</sup> Wang, J., & Ma, Z. (2022). Sparse Tensor-based Point Cloud Attribute Compression. 2022 MIPR, 59-64.

<sup>[2].</sup> Sheng, X., Li, L., Liu, D., Xiong, Z., Li, Z., & Wu, F. (2021). Deep-PCAC: An End-to-End Deep Lossy Compression Framework for Point Cloud Attributes. IEEE TMM, 24, 2617-2632.

<sup>[3].</sup> Fang, G., Hu, Q., Wang, H., Xu, Y., & Guo, Y. (2022). 3DAC: Learning Attribute Compression for Point Clouds. 2022 IEEE/CVF CVPR, 14799-14808.

<sup>[4]</sup> M. Quach, G. Valenzise, and F. Dufaux, "Folding-based compression of point cloud attributes," in IEEE ICIP, pp. 3309–3313, 2020.

<sup>[5]</sup> E. Alexiou, K. Tung, and T. Ebrahimi, "Towards neural network approaches for point cloud compression," in Applications of digital image processing XLIII, vol. 11510, SPIE, 2020.

# **Related Works: Point Cloud Geometry Compression (PCGC)**

#### □ SparsePCGC [1]

- Learning-based solution.
- Sparse tensor-based multiscale representation.
- State-of-the-art geometry compression performance.

This work extends the multiscale structure in SparsePCGC[1] to support PCAC by exhaustively exploiting cross-scale, cross-group, and cross-color correlations

1. Wang, J., Ding, D., Li, Z., Feng, X., Cao, C., & Ma, Z. (2021). Sparse Tensor-based Multiscale Representation for Point Cloud Geometry Compression. IEEE transactions on pattern analysis and machine intelligence.

#### **Method: Outline**

Core idea: Context-based entropy model.

#### **Cross-scale Prediction**

- Multiscale Sparse Tensor based hierarchical structure
- Neural Network based prediction and entropy model

**Cross-group Prediction** 

**Cross-color Prediction** 

### **Method: Construction of Multiscale Structure**

Progressive downscaling (average pooling) and quantization



Scale-wise prediction and entropy coding using neural network

### **Method: Neural Network based Prediction**

**Given Sparse CNN-based Attribute Probability Approximation (SAPA) model** 



**Conditional Entropy Model** 

$$p(\{\hat{x}_i^{(s)}\}) = \prod_i \left( \mathcal{L}(\mu_i, \sigma_i) * \mathcal{U}(-\frac{1}{2}, \frac{1}{2}) \right) (\hat{x}_i^{(s)}) \quad \text{with } \mu_i, \sigma_i = \text{SAPA}(\{\tilde{x}_i^{(s)}\}),$$

### **Method: Cross-scale Prediction**



#### **Method: Cross-color Prediction**

\_

- -



### **Experimental Results: Datasets**

- Human Bodies
  - 8iVFB[1]
  - Owlii[2]
  - MVUB[3]
- ScanNet[4]
- Ford[5]



[1] E. d'Eon, B. Harrison, T. Myers, and P. A. Chou, "8i voxelized full bodies - a voxelized point cloud dataset," ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) WG11M40059/WG1M74006, 2017.

[2] Y. Xu, Y. Lu, and Z. Wen, "Owlii dynamic human mesh sequence dataset," ISO/IEC JTC1/SC29/WG11 (MPEG/JPEG) m41658, 2017.
[3] L. Charles, C. Qin, O. Sergio, and A. C. Philip, "Microsoft voxelized upper bodies – a voxelized point cloud dataset," ISO/IEC MPEG m38673, May 2016.
[4] A. Dai, A. X. Chang, M. Savva, et al., "ScanNet: Richly-annotated 3d reconstructions of indoor scenes," 2017 IEEE CVPR, pp. 2432–2443, 2017.
[5] WG 7, MPEG 3D Graphics Coding, "Common test conditions for G-PCC," ISO/IEC JTC1/SC29/WG11 N00106, 2021.

### **Experimental Results: Compression Gains over G-PCC**

|                                            |                 | C DCC |      | Ours          |        | Ours             |        | Ours     |        |  |  |
|--------------------------------------------|-----------------|-------|------|---------------|--------|------------------|--------|----------|--------|--|--|
| P                                          | $\mathbf{Cs}$   | G-FCC |      | $\mathbf{CS}$ |        | $\mathbf{CS+CG}$ |        | CS+CG+CC |        |  |  |
|                                            |                 | bj    | pp   | bpp           | gain   | bpp              | gain   | bpp      | gain   |  |  |
| 8iVFB<br>vox10                             | loot            | 6.    | 19   | 6.26          | 1.1%   | 5.19             | -16.1% | 5.18     | -16.4% |  |  |
|                                            | red&black       | 9.39  |      | 10.20         | 8.6%   | 8.15             | -13.2% | 8.07     | -14.1% |  |  |
|                                            | average         | 7.79  |      | 8.23          | 4.8%   | 6.67             | -14.7% | 6.62     | -15.2% |  |  |
| Omilii                                     | player          | 7.72  |      | 8.34          | 8.0%   | 7.13             | -7.6%  | 6.78     | -12.2% |  |  |
| Uwill<br>vov11                             | dancer          | 7.80  |      | 8.33          | 6.9%   | 7.11             | -8.8%  | 6.80     | -12.8% |  |  |
| VOXII                                      | average         | 7.76  |      | 8.34          | 7.4%   | 7.12             | -8.2%  | 6.79     | -12.5% |  |  |
| MUTID                                      | Phil            | 10.27 |      | 10.13         | -1.4%  | 7.33             | -28.6% | 6.78     | -34.0% |  |  |
|                                            | Ricardo         | 5.92  |      | 5.12          | -13.6% | 3.68             | -37.9% | 3.59     | -39.4% |  |  |
| VOXIO                                      | average         | 8.10  |      | 7.62          | -7.5%  | 5.50             | -33.3% | 5.19     | -36.7% |  |  |
| SeenNet                                    | q5cm            | 12.92 |      | 14.13         | 9.3%   | 11.47            | -11.2% | 11.21    | -13.2% |  |  |
| Scannet                                    | $\mathbf{q2cm}$ | 13.13 |      | 15.04         | 14.6%  | 12.04            | -8.3%  | 11.86    | -9.7%  |  |  |
| Fond                                       | q2cm            | 5.32  |      | 7.05          | 32.5%  | 5.00             | -6.0%  | -        | -      |  |  |
| rord                                       | q1mm            | 5.    | 22   | 6.93          | 32.9%  | 4.97             | -4.7%  | -        | -      |  |  |
| Average Time (Eocoding Decoding) (s/frame) |                 |       |      |               |        |                  |        |          |        |  |  |
| 8iVFB_vox10                                |                 | 9.5   | 9.3  | 5.7           | 5.1    | 10.1             | 9.8    | 15.7     | 16.0   |  |  |
| Owlii vox11                                |                 | 32.8  | 32.0 | 17.5          | 15.3   | 37.0             | 35.9   | 56.0     | 58.1   |  |  |
| MVUB                                       | MVUB vox10      |       | 17.0 | 10.2          | 9.2    | 19.0             | 18.3   | 27.3     | 28.3   |  |  |
| $\mathbf{ScanNet}$ q2cm                    |                 | 2.0   | 2.0  | 1.2           | 1.2    | 3.6              | 3.5    | 6.3      | 6.3    |  |  |
| Ford almm                                  |                 | 1.1   | 1.1  | 0.8           | 0.8    | 8.0              | 8.0    | -        | -      |  |  |

Table 1: Evaluation of compression efficiency and computational complexity.

- 15.2%, 12.5%, and 36.7% bitrate reduction on 8iVFB, Owlii, and MVUB
- 13.2% and 9.7% gains on ScanNet with 5cm and 2cm precision.
- 6.0% and 4.7% gains on Ford with 2cm and 1mm precision

# **Experimental Results: Runtime Comparison**

| PCs                                        |                 | G-PCC |      | Ours  |        | Ours             |        | Ours     |        |  |  |
|--------------------------------------------|-----------------|-------|------|-------|--------|------------------|--------|----------|--------|--|--|
|                                            |                 |       |      |       | CS     | $\mathbf{CS+CG}$ |        | CS+CG+CC |        |  |  |
|                                            |                 | bpp   |      | bpp   | gain   | bpp              | gain   | bpp      | gain   |  |  |
| 8iVFB<br>vox10                             | loot            | 6.19  |      | 6.26  | 1.1%   | 5.19             | -16.1% | 5.18     | -16.4% |  |  |
|                                            | red&black       | 9.39  |      | 10.20 | 8.6%   | 8.15             | -13.2% | 8.07     | -14.1% |  |  |
|                                            | average         | 7.79  |      | 8.23  | 4.8%   | 6.67             | -14.7% | 6.62     | -15.2% |  |  |
| Omilii                                     | player          | 7.72  |      | 8.34  | 8.0%   | 7.13             | -7.6%  | 6.78     | -12.2% |  |  |
| vox11                                      | dancer          | 7.80  |      | 8.33  | 6.9%   | 7.11             | -8.8%  | 6.80     | -12.8% |  |  |
|                                            | average         | 7.76  |      | 8.34  | 7.4%   | 7.12             | -8.2%  | 6.79     | -12.5% |  |  |
| MUTID                                      | Phil            | 10.27 |      | 10.13 | -1.4%  | 7.33             | -28.6% | 6.78     | -34.0% |  |  |
|                                            | Ricardo         | 5.92  |      | 5.12  | -13.6% | 3.68             | -37.9% | 3.59     | -39.4% |  |  |
| VOXIO                                      | average         | 8.10  |      | 7.62  | -7.5%  | 5.50             | -33.3% | 5.19     | -36.7% |  |  |
| ScanNet                                    | q5cm            | 12.92 |      | 14.13 | 9.3%   | 11.47            | -11.2% | 11.21    | -13.2% |  |  |
|                                            | $\mathbf{q2cm}$ | 13.13 |      | 15.04 | 14.6%  | 12.04            | -8.3%  | 11.86    | -9.7%  |  |  |
| Dand                                       | q2cm            | 5.32  |      | 7.05  | 32.5%  | 5.00             | -6.0%  | -        | -      |  |  |
| Ford                                       | q1mm            | 5.    | 22   | 6.93  | 32.9%  | 4.97             | -4.7%  | -        | -      |  |  |
| Average Time (Eocoding Decoding) (s/frame) |                 |       |      |       |        |                  |        |          |        |  |  |
| 8iVFB_vox10                                |                 | 9.5   | 9.3  | 5.7   | 5.1    | 10.1             | 9.8    | 15.7     | 16.0   |  |  |
| Owlii_vox11                                |                 | 32.8  | 32.0 | 17.5  | 15.3   | 37.0             | 35.9   | 56.0     | 58.1   |  |  |
| MVUB                                       | MVUB vox10      |       | 17.0 | 10.2  | 9.2    | 19.0             | 18.3   | 27.3     | 28.3   |  |  |
| $\mathbf{ScanNet}$ q2cm                    |                 | 2.0   | 2.0  | 1.2   | 1.2    | 3.6              | 3.5    | 6.3      | 6.3    |  |  |
| Ford q1mm                                  |                 | 1.1   | 1.1  | 0.8   | 0.8    | 8.0              | 8.0    | -        | -      |  |  |

Table 1: Evaluation of compression efficiency and computational complexity.

- Same level of encoding / decoding time.
- Tested on RTX 3090 GPU.

Because G-PCC and our method run on different platforms, these numbers are served as the reference for intuitive understanding.

# **Experimental Results: Ablation Studies**

| $\mathbf{PCs}$                             |                 | G-PCC |      | 0             | urs    | C                | Jurs   | Ours                                      |        |  |  |
|--------------------------------------------|-----------------|-------|------|---------------|--------|------------------|--------|-------------------------------------------|--------|--|--|
|                                            |                 |       |      | $\mathbf{CS}$ |        | $\mathbf{CS+CG}$ |        | $\mathbf{CS} + \mathbf{CG} + \mathbf{CC}$ |        |  |  |
|                                            |                 | bpp   |      | bpp           | gain   | bpp              | gain   | bpp                                       | gain   |  |  |
| SWED                                       | loot            | 6.    | 19   | 6.26          | 1.1%   | 5.19             | -16.1% | 5.18                                      | -16.4% |  |  |
| vox10                                      | red&black       | 9.39  |      | 10.20         | 8.6%   | 8.15             | -13.2% | 8.07                                      | -14.1% |  |  |
|                                            | average         | 7.79  |      | 8.23          | 4.8%   | 6.67             | -14.7% | 6.62                                      | -15.2% |  |  |
| Owlii<br>vox11                             | player          | 7.72  |      | 8.34          | 8.0%   | 7.13             | -7.6%  | 6.78                                      | -12.2% |  |  |
|                                            | dancer          | 7.80  |      | 8.33          | 6.9%   | 7.11             | -8.8%  | 6.80                                      | -12.8% |  |  |
|                                            | average         | 7.76  |      | 8.34          | 7.4%   | 7.12             | -8.2%  | 6.79                                      | -12.5% |  |  |
| MVUB<br>vox10                              | Phil            | 10.27 |      | 10.13         | -1.4%  | 7.33             | -28.6% | 6.78                                      | -34.0% |  |  |
|                                            | Ricardo         | 5.92  |      | 5.12          | -13.6% | 3.68             | -37.9% | 3.59                                      | -39.4% |  |  |
|                                            | average         | 8.10  |      | 7.62          | -7.5%  | 5.50             | -33.3% | 5.19                                      | -36.7% |  |  |
| ScanNet                                    | q5cm            | 12.92 |      | 14.13         | 9.3%   | 11.47            | -11.2% | 11.21                                     | -13.2% |  |  |
|                                            | $\mathbf{q2cm}$ | 13.13 |      | 15.04         | 14.6%  | 12.04            | -8.3%  | 11.86                                     | -9.7%  |  |  |
| Ford                                       | q2cm            | 5.32  |      | 7.05          | 32.5%  | 5.00             | -6.0%  | -                                         | -      |  |  |
|                                            | q1mm            | 5.22  |      | 6.93          | 32.9%  | 4.97             | -4.7%  | -                                         | -      |  |  |
| Average Time (Eccoding Decoding) (s/frame) |                 |       |      |               |        |                  |        |                                           |        |  |  |
| 8iVFB_vox10                                |                 | 9.5   | 9.3  | 5.7           | 5.1    | 10.1             | 9.8    | 15.7                                      | 16.0   |  |  |
| Owlii vox11                                |                 | 32.8  | 32.0 | 17.5          | 15.3   | 37.0             | 35.9   | 56.0                                      | 58.1   |  |  |
| MVUB                                       | _vox10          | 17.1  | 17.0 | 10.2          | 9.2    | 19.0             | 18.3   | 27.3                                      | 28.3   |  |  |
| ScanNe                                     | ScanNet_q2cm    |       | 2.0  | 1.2           | 1.2    | 3.6              | 3.5    | 6.3                                       | 6.3    |  |  |
| $\overline{Ford} q1mm$                     |                 | 1.1   | 1.1  | 0.8           | 0.8    | 8.0              | 8.0    | -                                         | -      |  |  |

Table 1: Evaluation of compression efficiency and computational complexity.

- Cross-Scale(CS): +**4.8%**
- Cross-Scale(CS)+Cross-Group(CG): -14.7%
- Cross-Scale(CS)+Cross-Group(CG)+Cross-Color(CS): -15.2%

(tested on 8iVFB)

### **Conclusion & Future Work**

#### **Conclusion**

- The **first lightweight and generalized lossless PCAC** approach that outperforms MPEG G-PCC.
- The outstanding compression performance comes with the neural network based **cross-scale, cross-group, and cross-color prediction**.
- The lightweight computation is due to the use of **sparse convolution** and **parallel processing** inherently supported by our design.

#### **G** Future Works

- Further improvement on sparse point clouds like LiDAR data.
- The support of lossy compression under the same framework.

Thank you for your attention!