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Introduction: Constant Matrix Vector Multiplication (CMVM)Introduction: Constant Matrix Vector Multiplication (CMVM)

Objective

Compute the multiplication of an arbitrary vector x ∈ RK with a known, but arbitrary matrix
A ∈ RN×K :

y = Ax

with minimum effort given some desired accuracy.

Ubiquitous tasked performed in various signal processing application

A bulk of the computational burden of artificial neural networks (ANNs) in the inference
phase consists of CMVMs
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Introduction: Constant Matrix Vector Multiplication (CMVM)Introduction: Constant Matrix Vector Multiplication (CMVM)

Classical approach: Quantizing the entries of A independently:

A =

−0.1120 −2.0713

−0.4436 1.6139

1.2395 −0.1762

 ≈

−1
8 −2
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Binary representation:

Every additional bit improves the SQNR
by a factor of 4 (6 dB).

Every additional bit requires half of an
addition per matrix entry on average.

Canonical signed digit (CSD)
representation:

Every additional signed digit improves the
SQNR by a factor of 28 (14.5 dB).

Every additional signed digit requires one
addition/subtraction per matrix entry on
average.
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Binary representation:

Every additional bit improves the SQNR
by a factor of 4 (6 dB).

Every additional bit requires half of an
addition per matrix entry on average.

Canonical signed digit (CSD)
representation:

Every additional signed digit improves the
SQNR by a factor of 28 (14.5 dB).

Every additional signed digit requires one
addition/subtraction per matrix entry on
average.

Can we do better?
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Linear Computation Coding: Multiplicative DecompositionLinear Computation Coding: Multiplicative Decomposition

Idea: Approximate the target matrix A by a product of matrices

A ≈ FQ . . .F 2F 1

such that the product with a vector

Ax ≈ FQ . . . (F 2(F 1x))

can be efficiently computed.

R. Müller, B. Gäde, A. Bereyhi, ’Linear computation coding: A framework for joint quantization and
computing’, Algorithms, 2022
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Multiplicative Decomposition: An ExampleMultiplicative Decomposition: An Example

A =

−0.1120 −2.0713

−0.4436 1.6139

1.2395 −0.1762

 ≈

Wiring matrix W2︷ ︸︸ ︷ 1 − 1
32 0

0 1− 1
4 0

1
16 0 1


Codebook matrix C1︷ ︸︸ ︷ −1

8 −2

−1
2 2

1 + 1
4 0



≈

−0.1094 −2.0625
−0.375 1.5
1.2422 −0.125


Multiplications only by signed powers of two ⇒ Only bitshifts

We only need one addition in forming a linear combination of two vectors, irrespective of
the vector size.
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Multiplicative Decomposition: An ExampleMultiplicative Decomposition: An Example
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Wiring matrix W2︷ ︸︸ ︷ 1 − 1

32 0

0 1− 1
4 0

1
16 0 1


Codebook matrix C1︷ ︸︸ ︷ −1
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≈

1 + 1
256 0 0

0 1 + 1
16 0

1
32 0 1


−0.1094 −2.0625

−0.375 1.5
1.2422 −0.125


︸ ︷︷ ︸

Updated codebook matrix C2=W 2C1

The approximation improves,

the larger the matrix,

the more matrix factors are used,

the larger the number of codewords (ideally: #rows = 2#cols).
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Problem StatementProblem Statement

Given A and C we want to obtain W , such that

A ≈ WC

Sparse Recovery Problem: Obtaining the wiring coefficients

Row-wise optimization problem, with wn and an being the n-th row of W and A,
respectively:

wn = argmin
ω∈C

∥an − ωC∥2

with C =

{
ω =

S∑
s=1

is1js,N : is ∈ {0,±2Z}, js ∈ {1, ..., N} ∀s

}
︸ ︷︷ ︸

Set of all vectors ω containing at most S non zero factors (signed powers of two).

What are our options to solve this problem?
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State of the Art: Discrete Matching PursuitState of the Art: Discrete Matching Pursuit

Greedy, decision-directed algorithm based on the matching pursuit approach:

Find the codeword with quantized scaling coefficient the minimizes the distance/error to
the target vector.

Perform iteratively S times.

Time complexity: Cubic in N , the number of rows of A.
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Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

wn =
(
0 0 0 0

)
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Example: Discrete Matching PursuitExample: Discrete Matching Pursuit
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Example: Discrete Matching PursuitExample: Discrete Matching Pursuit
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Example: Discrete Matching PursuitExample: Discrete Matching Pursuit
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Example: Discrete Matching PursuitExample: Discrete Matching Pursuit
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Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

1 c1

14 c
2

wn =
(
1 1

4 0 2
)

Approximation (S = 3): an ≈ wnC = 1c1 +
1
4c2 + 2c4
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Exponential SearchExponential Search

To get a grasp on the optimum performance for solving our optimization problem:

Exhaustive search to solve for wn = argmin
ω∈C

∥an − ωC∥2.

We only use a finite subset of signed powers of two, to keep the computation tractable,
i.e. Aexp ⊂ {0,±2Z}.
Exponential time complexity both in N and |Aexp|, i.e. O(NS |Aexp|S).
Computationally tractable only for small to medium matrix sizes and small S.
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Reduced-State ApproachReduced-State Approach

Middle ground between DMP and the exponential search algorithm:

Don’t update wiring coefficients in wn in every iteration.

Instead keep a list of M best vectors within each iteration.

At termination select the vector with minimum error from the list.

Retains cubic time complexity in N , only quadratic complexity in M .

For M = 1 the algorithm reduces to DMP.
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Example: Reduced-State ApproachExample: Reduced-State Approach

an

Memory size: M = 2
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Example: Reduced-State ApproachExample: Reduced-State Approach
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Example: Reduced-State ApproachExample: Reduced-State Approach
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Example: Reduced-State ApproachExample: Reduced-State Approach
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Example: Reduced-State ApproachExample: Reduced-State Approach
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Memory size: M = 2

Approximation (S = 3):
an ≈ wnC = 1

2c1 + 2c2 + 1c6
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Numerical EvaluationNumerical Evaluation

Target matrix entries drawn from an i.i.d. Gaussian distribution

Averaged over 105 matrix entries (104 for exponential search algorithm)

Performance metrics:

Computational Cost: Cumulative number of additions, i.e. the number of additions required
for multiplying x to the multiplicative decomposition of A
Accuracy/Distortion: Signal to Quantization Noise Ratio
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Performance ComparisonPerformance Comparison

Exponential Search

Reduced-State (M=5)

DMP
Parameters:

DMP: S = 2

Exponential search:
S = 3, Aexp =
{±2−40,±2+5}
Reduced-State: S = 3,
M = 5
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Performance Comparison: Varying SPerformance Comparison: Varying S
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64× 4

DMP: S = 2

Exponential search:
S = 3, Aexp =
{±2−40,±2+5}
Reduced-State:
Varying S, M = 5
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Performance Comparison: Varying MPerformance Comparison: Varying M
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Performance Comparison: Different Matrix SizesPerformance Comparison: Different Matrix Sizes

Relative savings over benchmark DMP for a target precision of 8 bit integer arithmetic
(SQNR ≥ 47 dB).

Exponential Reduced State
search S = 3 S = 4 S = 8

Matrix size S = 3 M = 5 M = 10 M = 5 M = 10 M = 5 M = 10

16× 2 17.8% 10.4% 13.4% 14.1% 17.8% 16.7% 21.9%
16× 4 34.5% 16.0% 24.5% 25.8% 32.7% 25.4% 34.4%

32× 4 15.7% 10.5% 12.9% 14.0% 17.2% 18.4% 22.3%
32× 6 25.3% 15.5% 19.0% 19.7% 24.5% 19.4% 26.0%

64× 4 12.9% 7.5% 9.8% 11.0% 13.8% 13.5% 16.8%
64× 6 14.9% 9.6% 11.4% 13.6% 16.5% 15.6% 19.0%

Savings of 10% and more over DMP.
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Implementation: Practical ConsiderationsImplementation: Practical Considerations

Linear computation coding is very efficient when implemented on reconfigurable hardware,
such as FPGAs.

Up to now S = 2: N adders required per wiring matrix performing independent
computations

Proposed algorithms harvest additional gains only for S > 2

S = 3: Can be utilized efficiently due to the availability of efficient 3-input adders on
modern FPGAs (Xilinx patent).

S = 4, 6, 8, . . . : Can be implemented efficiently using adder trees.

A. Lehnert, P. Holzinger, S. Pfenning, R. Müller, M. Reichenbach, ’Most ressource efficient matrix vector
multiplication on FPGA’, IEEE Access, 2023
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Conclusion & OutlookConclusion & Outlook

In summary:

Linear computation coding reduces the computational effort required for constant matrix
vector multiplication

Proposed algorithms improve over benchmark DMP benchmark by 10% and more.

Proposed reduced state algorithm performs close to exponential search at a tractable
computational complexity.

Suitable for reconfigurable hardware due to efficient implementation of three input
additions on modern FPGAs.

Outlook:

Application to various types of neural networks.
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Thank you for your attention!

Linear Computation Coding: Exponential Search and Reduced-State Algorithms17 / 1717 / 17


	Title

