
Linear Computation Coding:
Exponential Search and Reduced-State Algorithms

Linear Computation Coding:
Exponential Search and Reduced-State Algorithms

Data Compression Conference (DCC) 2023, Snowbird, UT

Hans Rosenberger, Johanna S. Fröhlich, Ali Bereyhi, Ralf R. Müller

Institute for Digital Communications

Friedrich-Alexander-Universität Erlangen-Nürnberg

February 28, 2023

Introduction: Constant Matrix Vector Multiplication (CMVM)Introduction: Constant Matrix Vector Multiplication (CMVM)

Objective

Compute the multiplication of an arbitrary vector x ∈ RK with a known, but arbitrary matrix
A ∈ RN×K :

y = Ax

with minimum effort given some desired accuracy.

Ubiquitous tasked performed in various signal processing application

A bulk of the computational burden of artificial neural networks (ANNs) in the inference
phase consists of CMVMs

Linear Computation Coding: Exponential Search and Reduced-State Algorithms1 / 171 / 17

Introduction: Constant Matrix Vector Multiplication (CMVM)Introduction: Constant Matrix Vector Multiplication (CMVM)

Classical approach: Quantizing the entries of A independently:

A =

−0.1120 −2.0713

−0.4436 1.6139

1.2395 −0.1762

 ≈

−1
8 −2

−1
2 2

1 −1
4

Binary representation:

Every additional bit improves the SQNR
by a factor of 4 (6 dB).

Every additional bit requires half of an
addition per matrix entry on average.

Canonical signed digit (CSD)
representation:

Every additional signed digit improves the
SQNR by a factor of 28 (14.5 dB).

Every additional signed digit requires one
addition/subtraction per matrix entry on
average.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms2 / 172 / 17

Introduction: Constant Matrix Vector Multiplication (CMVM)Introduction: Constant Matrix Vector Multiplication (CMVM)

Classical approach: Quantizing the entries of A independently:

A =

−0.1120 −2.0713

−0.4436 1.6139

1.2395 −0.1762

 ≈

−1
8 −2

−1
2 2

1 −1
4

+

1
64 − 1

16
1
16 −1

2
1
4

1
16

Binary representation:

Every additional bit improves the SQNR
by a factor of 4 (6 dB).

Every additional bit requires half of an
addition per matrix entry on average.

Canonical signed digit (CSD)
representation:

Every additional signed digit improves the
SQNR by a factor of 28 (14.5 dB).

Every additional signed digit requires one
addition/subtraction per matrix entry on
average.

Can we do better?

Linear Computation Coding: Exponential Search and Reduced-State Algorithms2 / 172 / 17

Linear Computation Coding: Multiplicative DecompositionLinear Computation Coding: Multiplicative Decomposition

Idea: Approximate the target matrix A by a product of matrices

A ≈ FQ . . .F 2F 1

such that the product with a vector

Ax ≈ FQ . . . (F 2(F 1x))

can be efficiently computed.

R. Müller, B. Gäde, A. Bereyhi, ’Linear computation coding: A framework for joint quantization and
computing’, Algorithms, 2022

Linear Computation Coding: Exponential Search and Reduced-State Algorithms3 / 173 / 17

Multiplicative Decomposition: An ExampleMultiplicative Decomposition: An Example

A =

−0.1120 −2.0713

−0.4436 1.6139

1.2395 −0.1762

 ≈

Wiring matrix W2︷ ︸︸ ︷ 1 − 1
32 0

0 1− 1
4 0

1
16 0 1

Codebook matrix C1︷ ︸︸ ︷ −1

8 −2

−1
2 2

1 + 1
4 0

≈

−0.1094 −2.0625
−0.375 1.5
1.2422 −0.125

Multiplications only by signed powers of two ⇒ Only bitshifts

We only need one addition in forming a linear combination of two vectors, irrespective of
the vector size.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms4 / 174 / 17

Multiplicative Decomposition: An ExampleMultiplicative Decomposition: An Example

A =

−0.1120 −2.0713

−0.4436 1.6139

1.2395 −0.1762

 ≈

1 + 1
256 0 0

0 1 + 1
16 0

1
32 0 1

Wiring matrix W2︷ ︸︸ ︷ 1 − 1

32 0

0 1− 1
4 0

1
16 0 1

Codebook matrix C1︷ ︸︸ ︷ −1

8 −2

−1
2 2

1 + 1
4 0

≈

1 + 1
256 0 0

0 1 + 1
16 0

1
32 0 1

−0.1094 −2.0625

−0.375 1.5
1.2422 −0.125

︸ ︷︷ ︸

Updated codebook matrix C2=W 2C1

The approximation improves,

the larger the matrix,

the more matrix factors are used,

the larger the number of codewords (ideally: #rows = 2#cols).

Linear Computation Coding: Exponential Search and Reduced-State Algorithms4 / 174 / 17

Problem StatementProblem Statement

Given A and C we want to obtain W , such that

A ≈ WC

Sparse Recovery Problem: Obtaining the wiring coefficients

Row-wise optimization problem, with wn and an being the n-th row of W and A,
respectively:

wn = argmin
ω∈C

∥an − ωC∥2

with C =

{
ω =

S∑
s=1

is1js,N : is ∈ {0,±2Z}, js ∈ {1, ..., N} ∀s

}
︸ ︷︷ ︸

Set of all vectors ω containing at most S non zero factors (signed powers of two).

What are our options to solve this problem?

Linear Computation Coding: Exponential Search and Reduced-State Algorithms5 / 175 / 17

State of the Art: Discrete Matching PursuitState of the Art: Discrete Matching Pursuit

Greedy, decision-directed algorithm based on the matching pursuit approach:

Find the codeword with quantized scaling coefficient the minimizes the distance/error to
the target vector.

Perform iteratively S times.

Time complexity: Cubic in N , the number of rows of A.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms6 / 176 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

wn =
(
0 0 0 0

)

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

er
ro
r

wn =
(
0 0 0 2

)

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

er
ro
r

1 c1
wn =

(
0 0 0 2

)

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

1 c1

error

wn =
(
1 0 0 2

)

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

1 c1

14 c
2

wn =
(
1 0 0 2

)

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

1 c1

14 c
2

wn =
(
1 1

4 0 2
)

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Example: Discrete Matching PursuitExample: Discrete Matching Pursuit

an

2 c
4

1 c1

14 c
2

wn =
(
1 1

4 0 2
)

Approximation (S = 3): an ≈ wnC = 1c1 +
1
4c2 + 2c4

Linear Computation Coding: Exponential Search and Reduced-State Algorithms7 / 177 / 17

Exponential SearchExponential Search

To get a grasp on the optimum performance for solving our optimization problem:

Exhaustive search to solve for wn = argmin
ω∈C

∥an − ωC∥2.

We only use a finite subset of signed powers of two, to keep the computation tractable,
i.e. Aexp ⊂ {0,±2Z}.
Exponential time complexity both in N and |Aexp|, i.e. O(NS |Aexp|S).
Computationally tractable only for small to medium matrix sizes and small S.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms8 / 178 / 17

Reduced-State ApproachReduced-State Approach

Middle ground between DMP and the exponential search algorithm:

Don’t update wiring coefficients in wn in every iteration.

Instead keep a list of M best vectors within each iteration.

At termination select the vector with minimum error from the list.

Retains cubic time complexity in N , only quadratic complexity in M .

For M = 1 the algorithm reduces to DMP.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms9 / 179 / 17

Example: Reduced-State ApproachExample: Reduced-State Approach

an

Memory size: M = 2

Linear Computation Coding: Exponential Search and Reduced-State Algorithms10 / 1710 / 17

Example: Reduced-State ApproachExample: Reduced-State Approach

an

2 c2

err
or

4 c3
error

Memory size: M = 2

Linear Computation Coding: Exponential Search and Reduced-State Algorithms10 / 1710 / 17

Example: Reduced-State ApproachExample: Reduced-State Approach

an

2 c2

4 c3

1 c6

1
2
c 1

1
4 c

12

1
2 c5

Memory size: M = 2

Linear Computation Coding: Exponential Search and Reduced-State Algorithms10 / 1710 / 17

Example: Reduced-State ApproachExample: Reduced-State Approach

an

2 c2

4 c3

1 c6

1
2
c 1

1
4 c

12

1
2 c5

Memory size: M = 2

Linear Computation Coding: Exponential Search and Reduced-State Algorithms10 / 1710 / 17

Example: Reduced-State ApproachExample: Reduced-State Approach

an

2 c2

4 c3

1 c6

1
2 c5

1 8
c 8

1
2
c1

1
4 c10

1
2 c

4

Memory size: M = 2

Linear Computation Coding: Exponential Search and Reduced-State Algorithms10 / 1710 / 17

Example: Reduced-State ApproachExample: Reduced-State Approach

an

4 c3
1
2 c5

1 8
c 8

1
4 c10

1
2 c

4

2 c2

1 c6

1
2
c1

Memory size: M = 2

Approximation (S = 3):
an ≈ wnC = 1

2c1 + 2c2 + 1c6

Linear Computation Coding: Exponential Search and Reduced-State Algorithms10 / 1710 / 17

Numerical EvaluationNumerical Evaluation

Target matrix entries drawn from an i.i.d. Gaussian distribution

Averaged over 105 matrix entries (104 for exponential search algorithm)

Performance metrics:

Computational Cost: Cumulative number of additions, i.e. the number of additions required
for multiplying x to the multiplicative decomposition of A
Accuracy/Distortion: Signal to Quantization Noise Ratio

Linear Computation Coding: Exponential Search and Reduced-State Algorithms11 / 1711 / 17

Performance ComparisonPerformance Comparison

Exponential Search

Reduced-State (M=5)

DMP
Parameters:

DMP: S = 2

Exponential search:
S = 3, Aexp =
{±2−40,±2+5}
Reduced-State: S = 3,
M = 5

Linear Computation Coding: Exponential Search and Reduced-State Algorithms12 / 1712 / 17

Performance Comparison: Varying SPerformance Comparison: Varying S

0 100 200 300 400 500 600 700 800
Cumulative number of additions

0

20

40

60

80

100

120

SQ
NR

 [d
B]

Increasing S
(3, 4, 8)

DMP
Exponential search (S = 3)
Reduced State (S = 3, 4, 8)

Parameters:

Dimension of A:
64× 4

DMP: S = 2

Exponential search:
S = 3, Aexp =
{±2−40,±2+5}
Reduced-State:
Varying S, M = 5

Linear Computation Coding: Exponential Search and Reduced-State Algorithms13 / 1713 / 17

Performance Comparison: Varying MPerformance Comparison: Varying M

0 100 200 300 400 500 600 700 800
Cumulative number of additions

0

10

20

30

40

50

60

70

80
SQ

NR
 [d

B]

Increasing M
(2, 5, 10, 50)

DMP
Exponential Search
Reduced State (Variable M)

Parameters:

Dimension of A:
64× 6

DMP: S = 2

Exponential search:
S = 3, Aexp =
{±2−40,±2+5}
Reduced-State: S = 3,
Varying M

Linear Computation Coding: Exponential Search and Reduced-State Algorithms14 / 1714 / 17

Performance Comparison: Different Matrix SizesPerformance Comparison: Different Matrix Sizes

Relative savings over benchmark DMP for a target precision of 8 bit integer arithmetic
(SQNR ≥ 47 dB).

Exponential Reduced State
search S = 3 S = 4 S = 8

Matrix size S = 3 M = 5 M = 10 M = 5 M = 10 M = 5 M = 10

16× 2 17.8% 10.4% 13.4% 14.1% 17.8% 16.7% 21.9%
16× 4 34.5% 16.0% 24.5% 25.8% 32.7% 25.4% 34.4%

32× 4 15.7% 10.5% 12.9% 14.0% 17.2% 18.4% 22.3%
32× 6 25.3% 15.5% 19.0% 19.7% 24.5% 19.4% 26.0%

64× 4 12.9% 7.5% 9.8% 11.0% 13.8% 13.5% 16.8%
64× 6 14.9% 9.6% 11.4% 13.6% 16.5% 15.6% 19.0%

Savings of 10% and more over DMP.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms15 / 1715 / 17

Implementation: Practical ConsiderationsImplementation: Practical Considerations

Linear computation coding is very efficient when implemented on reconfigurable hardware,
such as FPGAs.

Up to now S = 2: N adders required per wiring matrix performing independent
computations

Proposed algorithms harvest additional gains only for S > 2

S = 3: Can be utilized efficiently due to the availability of efficient 3-input adders on
modern FPGAs (Xilinx patent).

S = 4, 6, 8, . . . : Can be implemented efficiently using adder trees.

A. Lehnert, P. Holzinger, S. Pfenning, R. Müller, M. Reichenbach, ’Most ressource efficient matrix vector
multiplication on FPGA’, IEEE Access, 2023

Linear Computation Coding: Exponential Search and Reduced-State Algorithms16 / 1716 / 17

Conclusion & OutlookConclusion & Outlook

In summary:

Linear computation coding reduces the computational effort required for constant matrix
vector multiplication

Proposed algorithms improve over benchmark DMP benchmark by 10% and more.

Proposed reduced state algorithm performs close to exponential search at a tractable
computational complexity.

Suitable for reconfigurable hardware due to efficient implementation of three input
additions on modern FPGAs.

Outlook:

Application to various types of neural networks.

Linear Computation Coding: Exponential Search and Reduced-State Algorithms17 / 1717 / 17

Thank you for your attention!

Linear Computation Coding: Exponential Search and Reduced-State Algorithms17 / 1717 / 17

	Title

