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1. Abstract
Entropy metrics (for example, permutation entropy, PE) are nonlinear measures of irregularity in time series (one-dimensional data). Some of these entropy metrics can be generalised to data on periodic structures
such as a grid or lattice pattern (two-dimensional data) using its symmetry, thus enabling their application to images. However, these metrics have not been developed for signals sampled on irregular domains, defined
by a graph. Here, we define for the first time an entropy metric to analyse signals measured over irregular graphs by generalising permutation entropy, a well-established nonlinear metric based on the comparison of
neighbouring values within patterns in a time series. Our algorithm, PEG, is based on comparing signal values on neighbouring nodes, using the adjacency matrix.
We show that this generalisation, PE, preserves the properties of classical PE for time series and the recent PE for images, and it can be applied to any graph structure with synthetic and real signals.

2. Conceptual framework

Entropy metric Type of signal
PE: Permutation Entropy Univariate time series, simple, computationally fast
PE2D: PE for 2D data Bidimensional data, valuable for texture analysis

PEG: PE for Graph Signals Graph signals (including: time series and image) [1]
MPE: Multivariate PE Multivariate data as a unique block (no interactions)
MPEG Mult. graph PE Multivariate data, including cross channel relationships [2]

3. Graph construction
Given a multivariate signal, we construct an under-
lying graph G as the Cartesian product of two graphs
G1 and G2, where G1 has the temporal information
of each times series and G2 models the relations be-
tween channels.

4. Multivariate permutation entropy
Let U = {ut,s}s=1,2,...,p

t=1,2,...,n be a multivariate time series
with interaction graph Ip between channels:
1. Graph construction of GU as described in

Sec. 3:
GU := −→

Pn□Ip .

2. Graph signal U is defined on the graph GU as
in Sec. 1:

U : V(GU) −→ R .

3. PEG for graph signals is used to define the
multivariate permutation entropy (MPEG) for the
signal U on the graph GU:

MPEG = PEG(U) .

7. Conclusions
1. For the first time, the concept of a nonlinear entropy metric – permutation entropy, PE – is extended,

from unidimensional time series and two-dimensional images to data residing on the vertices of graphs:
PEG.

2. By considering G as a path (1D), PEG reduces to the original PE.
3. PEG enables the extension of similar nonlinear dynamics analysis to data acquired over networks.
4. MATLAB code is freely available at https://github.com/JohnFabila/PEG.
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5. The algorithm: PEG

Construct the embedding vector ym,L
i ∈ Rm given

by ym,L
i =

(
y0

i , yL
i , . . . y

(m−1)L
i

)
, where

ykL
i = 1

|NkL(i)| (A
kLX)i .

The vector ym,L
i is associated with integer numbers

(1 to m, a permutation pattern) and arranged in in-
creasing order. Shannon entropy for the relative fre-
quency for the distinct permutations π1, π2, . . . , πk

PEG(m, L) = −
k∑

i=1
p(πi) ln p(πi) .

6. Applications
Examples include the detection of dynamical changes
in nonlinear systems such as, the Hénon map

xn+1 = 1 − ax2
n + yn and yn+1 = bxn .
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Lorenz system


x′ = σ(y − x)
y′ = x(ρ − z) − y

z′ = xy − βz
For ρ < 1 all orbits converge to a unique equilibrium
point.

m = 3 m = 4 m = 5 m = 6
ρ = 0.8 0.452 0.286 0.198 0.147
ρ = 0.9 0.453 0.287 0.198 0.148
ρ = 1.2 0.725 0.667 0.556 0.447
ρ = 1.3 0.722 0.687 0.590 0.481
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