Permutation Entropy for Graph Signals

John Stewart Fabila-Carrasco, Chao Tan, and Javier Escudero

School of Engineering, Institute for Digital Communications (IDCOM), University of Edinburgh, UK Javier.Escudero@ed.ac.uk / John.Fabila@ed.ac.uk

Entropy metrics (for example, permutation entropy, \mathbf{PE}) are nonlinear measures of irregularity in time series (one-dimensional data). Some of these entropy metrics can be generalised to data on periodic structures such as a grid or lattice pattern (two-dimensional data) using its symmetry, thus enabling their application to images. However, these metrics have not been developed for signals sampled on irregular domains, defined by a graph. Here, we define for the first time an entropy metric to analyse signals measured over irregular graphs by generalising permutation entropy, a well-established nonlinear metric based on the comparison of neighbouring values within patterns in a time series. Our algorithm, $\mathbf{PE}_{\mathbf{G}}$, is based on comparing signal values on neighbouring nodes, using the adjacency matrix. We show that this generalisation, \mathbf{PE} , preserves the properties of classical \mathbf{PE} for time series and it can be applied to any graph structure with synthetic and real signals.

[1] J.S. Fabila-Carrasco, C. Tan, and J. Escudero, "Permutation Entropy for Graph Signal", IEEE Trans. Signal and Inf. Process. over Networks, 2022, 8, pp. 288-300. [2] J.S. Fabila-Carrasco, C. Tan, and J. Escudero, "Multivariate permutation entropy, a Cartesian graph product approach", 30th EUSIPCO, Serbia, 2022, pp. 2081-2085.

1. Abstract

References

THE UNIVERSITY of EDINBURGH

$$\mathcal{G}_{\mathbf{U}} := \overrightarrow{P_n} \Box I_p$$
.

5. The algorithm:
$$\operatorname{PE}_{G}$$

Construct the embedding vector $\mathbf{y}_{i}^{m,L} \in \mathbf{I}$
by $\mathbf{y}_{i}^{m,L} = \left(y_{i}^{0}, y_{i}^{L}, \dots, y_{i}^{(m-1)L}\right)$, where
 $y_{i}^{kL} = \frac{1}{|\mathcal{N}_{kL}(i)|} (\mathbf{A}^{kL} \mathbf{X})_{i}$.
The vector $\mathbf{y}_{i}^{m,L}$ is associated with integer
(1 to m , a permutation pattern) and arrange
creasing order. Shannon entropy for the rel
quency for the distinct permutations π_{1}, π_{2} ,
 $\operatorname{PE}_{G}(m,L) = -\sum_{i=1}^{k} p(\pi_{i}) \ln p(\pi_{i})$.
Examples include the detection of dynamical
in nonlinear systems such as, the Hénon
 $x_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $y_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} =$
 $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} = 1 - ax_{n}^{2} + y_{n}$ and $u_{n+1} = 1 -$

 $\rho = 0$ $\rho = 0$ $\rho = 1$ $\rho = 1$

LEVERHULME TRUST

 \mathbb{R}^m given

numbers iged in inlative fre- \ldots,π_k

al changes map

quilibrium

	m = 3	m = 4	m = 5	m = 6
.8	0.452	0.286	0.198	0.147
.9	0.453	0.287	0.198	0.148
.2	0.725	0.667	0.556	0.447
.3	0.722	0.687	0.590	0.481

Acknowledgment: Work supported by the Leverhulme Trust via a Research Project Grant (RPG-2020-158).