Permutation Entropy for Graph Signals

John Stewart Fabila-Carrasco, Chao Tan, and Javier Escudero
School of Engineering, Institute for Digital Communications (IDCOM), University of Edinburgh, UK Javier.Escudero@ed.ac.uk / John.Fabila@ed.ac.uk

THE UNIVERSITY of EDINBURGH

LEVERHULME TRUST

1. Abstract

 neighbouring values within patterns in a time series. Our algorithm, $\mathbf{P E}_{\mathbf{G}}$, is based on comparing signal values on neighbouring nodes, using the adjacency matrix.

2. Conceptual framework

7. Conclusions

1. For the first time, the concept of a nonlinear entropy metric - permutation entropy, $\mathbf{P E}-$ is extended, from unidimensional time series and two-dimensional images to data residing on the vertices of graphs: PE_{G}.
2. By considering G as a path (1D), $\mathbf{P E}_{\mathbf{G}}$ reduces to the original $\mathbf{P E}$.
. $\mathbf{P E}_{\mathbf{G}}$ enables the extension of similar nonlinear dynamics analysis to data acquired over networks.
3. MATLAB code is freely available at https://github.com/JohnFabila/PEG.

3. Graph construction

Given a multivariate signal, we construct an underlying graph G as the Cartesian product of two graphs G_{1} and G_{2}, where G_{1} has the temporal information of each times series and G_{2} models the relations between channels.

Fig. 1. (a) Directed path with seven vertices, denoted by $\overrightarrow{P_{7}}$. (b) Interactions
between the four channels are encoded with the complete graph on four vertices, denoted by K_{4}. (c) The Cartesian product $\overrightarrow{P_{7}} \square K_{4}$.
4. Multivariate permutation entropy

Let $\mathbf{U}=\left\{u_{t, s}\right\}_{t=1,2, \ldots, n}^{s=1,2, p}$ be a multivariate time series with interaction graph I_{p} between channels:

1. Graph construction of \mathcal{G}_{U} as described in Sec. 3:

$$
\mathcal{G}_{\mathrm{U}}:=\overrightarrow{P_{n}} \square I_{p}
$$

Graph signal \mathbf{U} is defined on the graph $\mathcal{G}_{\mathbf{U}}$ as in Sec. 1:

$$
\mathbf{U}: \mathcal{V}\left(\mathcal{G}_{\mathbf{U}}\right) \longrightarrow \mathbb{R}
$$

3. $\mathbf{P E}_{\mathbf{G}}$ for graph signals is used to define the multivariate permutation entropy $\left(\mathrm{MPE}_{\mathrm{G}}\right)$ for the signal \mathbf{U} on the graph $\mathcal{G}_{\mathbf{U}}$:
$\mathrm{MPE}_{\mathrm{G}}=\mathrm{PE}_{\mathrm{G}}(\mathbf{U})$

References
[1] J.S. Fabila-Carrasco, C. Tan, and J. Escudero, "Permutation Entropy for Graph Signal", IEEE Trans. Signal and Inf. Process. over Networks, 2022, 8, pp. 288-300. [2] J.S. Fabila-Carrasco, C. Tan, and J. Escudero, "Multivariate permutation entropy, a Cartesian graph product approach", 30th EUSIPCO, Serbia, 2022, pp. 2081-2085.

5. The algorithm: PE_{C}

Construct the embedding vector $\mathrm{y}_{i}^{m, L} \in \mathbb{R}^{m}$ given by $\mathbf{y}_{i}^{m, L}=\left(y_{i}^{0}, y_{i}^{L}, \ldots y_{i}^{(m-1) L}\right)$, where

$$
y_{i}^{k L}=\frac{1}{\left|\mathcal{N}_{k L}(i)\right|}\left(\mathbf{A}^{k L} \mathbf{X}\right)_{i}
$$

The vector $\mathbf{y}_{i}^{m, L}$ is associated with integer numbers (1 to m, a permutation pattern) and arranged in increasing order. Shannon entropy for the relative frequency for the distinct permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$

$$
\mathrm{PE}_{\mathrm{G}}(m, L)=-\sum_{i=1}^{k} p\left(\pi_{i}\right) \ln p\left(\pi_{i}\right)
$$

6. Applications

Examples include the detection of dynamical changes in nonlinear systems such as, the Hénon map

$$
\begin{aligned}
& x_{n+1}=1-a x_{n}^{2}+y_{n} \quad \text { and } \quad y_{n+1}=b x_{n} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lorenz system } \begin{cases}x^{\prime} & =\sigma(y-x) \\
y^{\prime} & =x(\rho-z)-y \\
z^{\prime} & =x y-\beta z\end{cases}
\end{aligned}
$$

For $\rho<1$ all orbits converge to a unique equilibrium point.

	$m=3$	$m=4$	$m=5$	$m=6$
$\rho=0.8$	0.452	0.286	0.198	0.147
$\rho=0.9$	0.453	0.287	0.198	0.148
$\rho=1.2$	0.725	0.667	0.556	0.447
$\rho=1.3$	0.722	0.687	0.590	0.481

Acknowledgment: Work supported by the Leverhulme Trust via a Research Project Grant (RPG-2020-158).

