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ABSTRACT

A number of machine learning applications involve time series pre-
diction, and in some cases additional information about dynamical
constraints on the target time series may be available. For instance,
it might be known that the desired quantity cannot change faster than
some rate or that the rate is dependent on some known factors. How-
ever, incorporating these constraints into deep learning models, such
as recurrent neural networks, is not straightforward. In this paper, we
propose constrained dynamical neural ordinary differential equation
(CD-NODE) models, which treat the desired time series as a dy-
namic process that can be described by an ODE. CD-NODEs model
the rate of change of the time series as a function of both itself and
the current input features, parameterised as a neural network. We
explore the effect of constraining the dynamics of the model by plac-
ing explicit restrictions on the rate of change. The proposed model
is evaluated on speech-based continuous emotion prediction, where
such dynamical constraints are expected, using the publicly avail-
able RECOLA dataset. Results suggest that the model achieves per-
formances comparable with the state-of-the-art despite using signif-
icantly fewer parameters. Additional analyses reveal that imposing
these constraints on the model leads to faster convergence and better
performance, especially with smaller training data sets.

1. INTRODUCTION

Time series prediction is of great interest in a wide range of appli-
cations, and a significant subset of these applications involve the use
of machine learning models. However, the nature and characteris-
tics of these time series can vary significantly. For instance, in the
case of emotion state tracking it is known that changes in emotion
state may be correlated with specific behavioural events (e.g., laugh-
ter) [1], or in the case of health monitoring, biomarkers such as heart
rate exhibit characteristic changes in response to changes in the dif-
ferent physical activities (e.g., higher heart rate while running) [2].
Incorporating these known constraints in the prediction model can
be expected to allow for both easier training and more accurate pre-
dictions.

A variety of different modelling techniques have been employed
for time series prediction, ranging from autoregressive (AR) mod-
els [3], exponential smoothing [4] and state space and structural
models [5, 6] to machine learning techniques such as support vec-
tor machines [7] and more recently deep learning techniques such
as Recurrent Neural Networks (RNNs) and its variants [8, 9, 10].
Among these, the RNN based models have received the most atten-
tion in recent years, achieving state of the art performance in a wide
range of applications. However, these recurrent models do not ex-
pose the dynamics of the predicted quantity, which in turn makes
it difficult to incorporate any prior knowledge of the dynamics or

impose constraints on them.
To address these challenges, we propose a novel Constrained

Dynamical Neural Ordinary Differential Equation (CD-NODE)
model, which explicitly models the dynamics of the time series, and
performs predictions using an ODE solver. CD-NODE explores the
hypothesis that time series dynamics can be automatically learnt and
might even be a simpler modelling task compared to directly mod-
elling the desired time series. Critically, the proposed CD-NODE
model incorporates input features as an additional dependent vari-
able. Further, the proposed CD-NODE allows for constraints on the
dynamics of the time series, such as limits on the rate of change, to
be easily introduced.

We validate the model on a real-world dataset for speech based
emotion prediction, as the time-varying emotional state of a person
is generally represented as time series of two quantities, arousal (ac-
tivated to deactivated) and valence (positive to negative) intensity.
It can be reasonably expected that the emotional state varies slowly,
and significant changes will be correlated with characteristic changes
in the modalities used in emotion recognition, such as speech. These
observations about emotional state can be easily casted as constraints
on the dynamics of emotion state, and therefore serving as a good
task to validate the proposed models. The experimental results have
shown great promises of CD-NODE compared with state-of-the-art
models, and additional analyses have revealed the benefits of the rate
constraint, i.e., faster convergence and improved performance.

2. COMBINING NEURAL NETWORKS WITH
DYNAMICAL MODELS

A new family of Neural Ordinary Differential Equations (NODEs)
was recently proposed to model a dynamic process described by an
ODE with the governing function parameterized by a neural network
[11, 12]. This combines the advantages of ODEs in modelling con-
tinuous process and the great computational capability of neural net-
works. One of its variant, latent ODEs [12], was specifically de-
signed for time series prediction. As shown in Figure 1(a), latent
ODEs adopt a variational autoencoder to predict a time series y(t)
given an input series x(t). An encoder fenc maps x(t) to a point z0
in a latent space, following which a trajectory z(t) = [zt0 , · · · , ztN ]
is obtained by solving an ODE initial value problem:

[zt0 , · · · , ztN ] = ODESolve(f,θ, zt0 , t0, · · · , tN ) (1)

given,
dz(t)

dt
= f(z(t), t;θ) (2)

where, f is a neural network with parameters θ, governing the dy-
namics of the latent variable z. Finally, a decoder fdec maps the
latent space to the output space to obtain time series y(t).
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Fig. 1: A comparison between latent ODEs and proposed CD-NODEs. (a) Latent ODEs map input sequence xt through encoder fenc to an initial point z0 and
evaluate a sequence zt = [z0, · · · , zN ] in the latent space using an ODE. The output yt is mapped from zt through an decoder fdec. (b) Proposed CD-NODE
learn the dynamics of yt (dashed orange arrows) directly using an input-driven ODE, with time-varying xt as constraint. Further, additional constraint is
incorporated to limit the rate of change dy(t)

dt
no larger than k, via function ϕ.

Latent ODEs may suffer from two key limitations. Firstly, the
dynamics of y(t) (i.e., dy(t)

dt
) are not directly learnt, but captured im-

plicitly via dz(t)
dt

. It is reasonable to assume that dynamics dy(t)
dt

are
more associated with the input x(t) and past observations of y(t) in-
stead of an unknown latent representation, thus modelling dy(t)

dt
from

x(t) may be a better solution to capture the underlying dynamics.
Secondly, the latent representations z(t) are learnt in a data-driven
manner and do not allow for any known constraints on dy(t)

dt
to be

imposed. The proposed CD-NODE aims to eliminate the learning in
latent space and explicitly model the dynamics dy(t)

dt
from x(t) and

y(t), with additional constraints embedded in the model.

3. PROPOSED CONSTRAINED DYNAMICAL NODE

Model definition. The proposed CD-NODE is depicted in Figure
1(b), and the model can be written as:

dy(t)

dt
= ϕ(f(x(t), y(t);θ))) (3)

where f denotes the governing function parameterized by a neural
network θ, and ϕ denotes a function that imposes constraints on the
rate of change of y(t).

The dynamics dy(t)
dt

is implicitly modelled by the input-driven
governing function, allowing the dynamics to vary with the input
features x(t) and and past observations y(t). An additional advan-
tage of CD-NODE is the possibility of explicitly incorporating con-
straints on dy(t)

dt
, represented by ϕ. For instance, arousal and valence

trajectories (representing the time-varying emotion state) are gener-
ally smooth and the rate of change may not exceed a certain limit.
Such a constraint can be easily introduced by applying a function ϕ
as in Eq. (3). Specifically, we define ϕ as:

dy(t)

dt
= α ∗ tanh( 1

α
f(x(t), y(t);θ) (4)

where tanh limits the derivatives to -1 and 1, and α scales the tanh
outputs as well as stretching (when α ≥ 1) the ‘linear region’ of
tanh function. A large α would be akin to an unconstrained CD-
NODE, while a small α limits the value of the derivatives, i.e., the
rate of arousal/valence change.

Training of CD-NODE. Learning the CD-NODE model parameters
involves a forward propagation using an ODE solver to obtain y(t),
and a backward propagation via another call of an ODE solver to
optimize the parameters. A Runge-Kutta method [13] is used during

forward propagation, and the adjoint sensitivity method is adopted
for backpropagation [11].

Forward propagation. The solution of y(t) is obtained using the
ODE solver as:

y(t) = ODESolve(f,θ, yt0 ,x(t), tn), tn ∈ [t0, tN ] (5)
Specifically, at each time step, ytn can be obtained as:

ytn+1 = ytn +

∫ tn+1

tn

f(x(τ), y(τ),θ)dτ (6)

Given the initial condition yt0 and the features x(t) at each time
step tn, CD-NODE can solve the ODE initial value problem to ob-
tain y(t) = [yt0 , yt1 , · · · , ytN ] by numerical integration (i.e., Eq.
6). To obtain an accurate estimate during forward propagation, an
adaptive Runge-Kutta (RK) ODE solver using a small step size is
employed As we additionally introduce the conditional variable of
features x(τ) to estimate the dynamics, we modified the solver with
the assumption that features x(τ) are kept unchanged for all the in-
ternal steps within [tn, tn+1]. This is reasonable since features are
generally quasi-stationary during the short time intervals.

Backward propagation. The loss function, L(T,θ), measures the
difference between the predictions ŷ(t) and true time series y(t) over
all time steps T = [t0, t1, · · · , tN ]. It should be chosen based on the
application and the characteristics of the time series. Any differen-
tiable loss function can be employed with CD-NODE.

To find the gradients of L(T,θ) with respect to θ and optimize
the model parameters, the adjoint sensitivity method is adopted. This
choice lets us reduce memory cost and numerical errors. dL

dθ
is

estimated using chain rule with an intermediate adjoint states of
a(t) = ∂L

∂y(t)
, and it involves another ODE solver computing the

intermedia values backwards from t = T to t = 0. Details can be
referred to [11, 14]. We still view features xt as constant within two
consecutive time steps [tn, tn+1] for the ODE solver.

Initial value for ODEs. To reconstruct the predicted time series y(t),
the ODE solver requires an initial value, yt0 . Consequently, we eval-
uate the model using an additional layer to learn the initial values and
then pass it to the ODE solver. The additional layer for predicting
yt0 and all other layers of the model are jointly learnt.

4. MODELLING EMOTION DYNAMICS

The development of the CD-NODE model was motivated by the
speech based continuous emotion prediction. Evidence suggests that
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Fig. 2: Proposed CD-NODE for speech emotion prediction. Features x(t)
are first extracted and incorporated as a conditional variable in the model f
to learn the dynamics dy(t)

dt
. Additional constraint on the limits of dynamics

is further imposed via ϕ.

emotion change are better perceived compared with numerical rat-
ings of the emotional state [15], and that emotion change might be
predicted more accurately than absolute emotion [16].

4.1. Datasets
The RECOLA database is one of the most popular, publicly available
emotion dataset, which contains multimodal cues in French includ-
ing audio, video and physiological signals [17]. Speech collected
from 18 speakers was equally partitioned into training and develop-
ment sets with 9 speakers in each set, identically to the partitions
used in [17]. All experiments were conducted using the training
dataset to develop the model and optimize the hyperparameters, and
evaluated on the development set. The annotation was rated between
-1 and 1 by six gender-balanced raters for both arousal and valence
sampled every 40ms. The ground truth was obtained as the weighted
average value over six raters.

4.2. Experimental setup
An overview of the CD-NODE model employed for speech emotion
prediction system is shown in Figure 2.
Features. Bag-of-Audio-Word (BoAW) [18] features were extracted.
39-dimension MFCCs were first extracted from speech on each 25
ms window, with a hop size of 10 ms. Then BoAW is developed
using a 100-dimension audio codebook, generated using k-means++
clustering for each 3 seconds window. Readers are referred to [18]
for details.
Network parameters. Three fully connected (FC) layers are used to
approximate the governing function f in the CD-NODE, with each
layer comprised of 64 neurons. tanh activation was employed in
the first 2 layers to introduce nonlinearity, while a linear activation
was adopted for the 3rd layer in CD-NODEϕ (i.e., without rate con-
straint ϕ) and a scaled tanh activation for the CD-NODE (i.e., with
rate constraint ϕ). The additional layer that predicts the initial val-
ues, yt0 , also contains 64 neurons with a tanh activation function.
The absolute and relative error tolerances of the ODE solver were
chosen as 10−13 and 10−7 respectively based on preliminary empir-
ical analyses [11].

To determine the proper range of α values (cf. Eq. 4) for rate
constraint of CD-NODE, the true rates of change over the test set

were calculated by taking successive differences of the labels and
dividing by the sample rate of 0.04. The maximum rate of change
for arousal and valence were observed to be 6.25 and 3.88 respec-
tively, with 95% quantiles of 0.21 and 0.13. Therefore, we select
{0.1, 0.25, 0.5, 1, 2, 4, 6, 8} as the set of α values for testing.

To train the model, the loss function was chosen as:

L(T,θ) = 1− ρc(y(t), ŷ(t)) (7)

where ρc represents the Concordance Correlation Coefficient (CCC)
(cf. Eq. 8), a measure of similarity between predictions, ŷ(t), and
the target, y(t). A higher CCC, same as a lower loss, indicates a
better predicted time series. Adam optimizer was adopted, and the
initial learning rate is optimized to 0.01, with a decaying ratio of
0.9. 60 and 30 epochs were tested for CD-NODE and an LSTM
baseline respectively. 2- and 4-second perception delays for arousal
and valence were adopted respectively [19]. Three different types of
post-processing were tested including mean shift, scaling, and both
mean shift and scaling [19], with the best performance reported. It
should be noted that the speech utterance was chunked into segments
for training to increase the training efficiency, with the length rang-
ing from 1 second to 10 seconds (with a step size of 1 second). The
entire test utterance was predicted without segmentation to match
the practical scenarios.
Evaluations. All results are reported in terms of CCC [17] as:

ρc =
2ρσyσŷ

σ2
y + σ2

ŷ + (µy − µy)2
(8)

where σy and σŷ are the standard deviation for the ground truth and
the predictions, µy and µŷ are the corresponding mean of the two
variables. ρ is the Pearson’s correlation coefficient between the two
variables 1.

5. EXPERIMENTAL RESULTS

5.1. Comparison with State-of-the-arts
A comparison of the proposed CD-NODEα with state-of-the-art sys-
tems in terms of CCC is shown in Table 1. It can be observed that
the proposed systems outperform the baseline for both arousal and
valence prediction; and perform comparably, if not somewhat better,
than other systems. This is especially true for valence prediction,
which is generally the harder of the two for speech-based emotion
prediction [19]. This may be because by modelling valence dynam-
ics directly and constraining the valence prediction to be a continu-
ously evolving process, the prediction system is less likely to make
noisy predictions. Finally, it should be noted that the proposed sys-
tem employs a very simple neural network structure comprising of
only a few dense layers, while most of the other systems adopt either
a complex network structure, a complex training strategy, or both.
Specifically, the number of parameters employed in CD-NODEα is
only 19.7% of that in baseline LSTM.

5.2. Impacts of the Rate Constraint
To investigate the effects of the rate constraint, we have compared
the model convergence and performance between unconstrained
CD-NODEᾱ and constrained CD-NODEα with varying rate con-
straints. For each α value, the experiment is repeated for 10 different
seeds. Both CD-NODEᾱ and CD-NODEα are initialised with the
same parameters for a fair comparison.

In terms of the convergence behavior of the models, we first
compared the training loss over 60 epochs between CD-NODEᾱ

1Our code is greatly enabled by torchdiffeq, and will be made public available upon
publication at Github.



Table 1: Comparison of the proposed CD-NODEα (bold) and state-
of-the-art systems for emotion prediction in terms of Concordance
correlation coefficients (CCC). The standard deviation of the CCC
computed across all test utterances is reported in paranthesis.

Systems Features Arousal Valence
End-to-end Raw signals 0.741 0.325
Adversarial Functionals 0.797 0.474

Adversarialwd Functionals 0.780 0.501
Reconstruction Functionals 0.754 0.378

LSTM BoAW 0.728(0.098) 0.396(0.145)
CD-NODEᾱ BoAW 0.782(0.052) 0.506(0.119)
CD-NODEα BoAW 0.778(0.072) 0.491(0.115)

*wd: Wasserstein Distance used in adversarial training.
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Fig. 3: Comparison of convergence behaviour between CD-NODEᾱ and CD-
NODEα with varying values of α. Top: training loss v.s epoch with the best
model over 10 seeds. Bottom: convergence epoch averaged across 10 seeds.
CD-NODEα generally shows earlier convergence over CD-NODEᾱ.

and CD-NODEα. The training loss with the best performed model
among 10 different seeds is reported in Figure 3 (top), for arousal
and valence respectively. It is observed that the CD-NODEα with
α = 0.25, 0.5, 1 converge faster than CD-NODEᾱ for both arousal
and valence, especially for valence. Further, we compared the num-
ber of epochs needed for the training loss to fall under 90% of its
initial loss, defined as the convergence epoch (bottom). The value
is averaged over 10 seeds. The smaller the convergence epoch, the
faster the model convergence rate. The smallest values of α result
in earlier convergence on average. On the valence models however,
nearly every selected value of α results in an earlier convergence.

Figure 4 shows the model performance in terms of CCC for CD-
NODEᾱ and CD-NODEα, with different values of α. A significant
improvement is observed for arousal at all selected α values. In
the case of valence, both models show comparable performance.
The poor performance in valence for α = 0.1 is to be expected
as when the constraints are too tight, it is impossible for the model
to adequately capture the dynamics of the signal. Finally, we note
that on both arousal and valence, the best performance occurs when
α = 0.5, where there is a relative improvement of 4.5% and 3.5%
over unconstrained CD-NODEα for arousal and valence.

From these results we conclude that introducing the constraint
with a reasonable choice of α results in both improved performance
and earlier convergence on both arousal and valence. For both tasks,
we found experimentally that α = 0.5 yields the best results. In-
terestingly, this demonstrates that it is not necessary to set the con-
straints larger than the maximum rates of change seen in the dataset.
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This is likely because the highest rates of change are due to noise in
the labels rather than the underlying signal.

5.3. Smaller Training Sets
We also investigate the impact of the constraints when training data
is limited. The size of training data was decreased from 9 training
utterances (i.e., 100%) to 1 random utterance (i.e., 11%), with a step
size of 2 utterances (i.e., 22%). As the subset of training data is
randomly selected, the experiments for each subset were thus con-
ducted for 5 random folds, and the final performance is averaged
across 5 folds to reduce the impact of randomness. The experiments
were also carried out for 10 different seeds, and the best performance
among 10 seeds is reported in Figure 5.

As expected, performance decreases drastically for both CD-
NODEᾱ and CD-NODEα as the training set becomes substantially
smaller. However, CD-NODEα generally outperforms the CD-
NODEᾱ for both arousal and valence, and especially shows a
consistent improvement for valence predictions. Specifically, we
can observe that when the training set decreases from 9 utterances
to 1 utterance, the performance decrease with CD-NODEα is sig-
nificantly smaller than CD-NODEᾱ, with 56% and 46% decrease
respectively.

6. CONCLUSION

A novel constrained dynamical neural ODE model has been pro-
posed for time series prediction, which allows for explicit constraints
on dynamics of desired time series, such as input-driven nature and
the maximum rate of change, to be incorporated into the model. The
effectiveness was validated on continuous emotion prediction tasks,
and the proposed system was shown to consistently outperform a
LSTM based baseline system, and provide prediction accuracy in
line with that of state-of-the-art deep learning systems for arousal
and valence prediction. The results suggest that modelling emo-
tion dynamics with known constraints is more advantageous than
directly modelling the numerical attributes. More importantly, addi-
tional analysis has revealed that rate constraint on the model enables
a faster convergence and an improved prediction performance for
both arousal and valence. In summary, CD-NODE allows for in-
sights from previous empirical studies of time series dynamics to be
easily incorporated.
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