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ABSTRACT

Traditional phase retrieval is generally concerned with re-
covering a signal from its Fourier magnitude measurements
whose inherent ambiguities make this problem especially
difficult. In this work, we present an efficient phase retrieval
technique from the single fractional Fourier transform (FrFT)
magnitude measurement. Specifically, the FrFT measurement
can be well-combined with signal priors via a generalized
alternating projection framework, which can effectively al-
leviate the ambiguities of phase retrieval and the stagnation
problem of numerical iterative processes. Through numerical
simulations, we demonstrate that reconstructing an image
from the single FrFT measurement leads to a significant per-
formance improvement over that from the Fourier transform
magnitude by using the proposed method. The source code is
available at https://github.com/Yixiao-Yang/SFrFPR.

Index Terms— Phase retrieval, fractional Fourier trans-
form, single-shot, generalized alternating projection

1. INTRODUCTION

Phase Retrieval (PR) is a long-established challenge for esti-
mating a signal from the phase-less linear measurements, en-
countered in various engineering fields including x-ray crys-
tallography [1], microscopy [2], holography [3], and compu-
tational imaging [4]. In optical detection systems, the measur-
able quantity is the photon flux, which is proportional to the
magnitude-square of a light wave. Furthermore, the observa-
tion in the far-field of diffraction or the focal plane of a lens
can be formulated by the Fourier transform, which provides
the possibility of Fourier PR [5].

Nevertheless, the Fourier PR problem is not uniquely
solvable without extra prior information due to the lack of
phase [6]. There exist trivial ambiguities caused by transla-
tion and inversion of the target and non-trivial ambiguities,
which conserve the Fourier magnitude measurement [7]. As
a result, standard PR algorithms suffer from serious stagna-
tion and produce inaccurate solutions [8]. Therefore, it is
of paramount importance to employ additional knowledge to
reduce the set of ambiguities or even to ensure uniqueness.
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Fig. 1. Operation of translation or inversion on the object
corresponds to the same magnitude in the Fourier domain,
but a different one in the Fractional Fourier domain. Here we
adopt the 0.5th-order fractional Fourier transform.

Over the years, several physical observation systems have
been developed, which record redundant measurements to
mitigate the ambiguities and algorithmic issues of PR. A pop-
ular example is coherent diffraction imaging (CDI), which
recovers an underlying object from the oversampled coher-
ent diffraction patterns in the far-field, given known image
support [9]. In terms of signal processing, this problem cor-
responds to reconstructing a two-dimensional signal from its
oversampled Fourier transform magnitude [10]. The trivial
ambiguity caused by signal shift can be avoided with com-
pact support. A further idea to obtain additional observations
is coded diffraction patterns (CDP), which use several ex-
posures with different masks to produce multiple diffraction
measurements [11]. This technique is based on the principle
that different masks can modulate the signal of interest and
introduce information redundancy to reduce ambiguities [12].
Another method to increase observation diversity is scanning
CDI or ptychography, which adopts the adjacent illumination
patterns to acquire a set of measurements [13]. The main
idea is to estimate a signal from measurements of short-time
Fourier transform magnitude with an overlapped window be-
tween adjacent short-time sections [14]. Nevertheless, those
observation systems introduce extra physical devices andIC
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measurement models involving high computational complex-
ity, which bring a burden to practical applications [15, 16].

In fact, the above optical settings assume that measure-
ments are taken at the Fourier plane or Fraunhofer regime.
However, the intensity pattern can be collected at an arbi-
trary plane between the object field and the far-field, which
would imply the new measurement model that is different
from Fourier transform [5]. In this context, the most promi-
nent case is the regime of Fresnel diffraction, where the
propagation-evolution of electromagnetic waves at an arbi-
trary distance away from the object plane can be described
as an integral form, termed Fresnel integral [17]. Moreover,
fractional Fourier transform (FrFT) as a well-defined signal
processing tool can be introduced here, which is a general-
ization of the Fourier transform [18, 19]. This is due to an
equivalent relation between FrFT and Fresnel integral, just
like the Fourier transform and Fraunhofer integral [20]. The
advantages to be gained from this connection are obvious:
FrFT provides a new signal processing perspective into de-
scribing the propagation of light, not limited to the spatial
or Fourier domains. In addition, compared with the Fresnel
integral, good theoretical properties and fast numerical al-
gorithms of FrFT can benefit the practical usage. Thus, this
gives rise to a few works on the problem of phase retrieval
from multiple FrFT magnitude measurements [21, 22]. How-
ever, they still require a lot of observations to ensure recovery
and ignore algorithmic improvements.

Towards this dilemma, we first address the problem of
reconstructing a two-dimensional image from the single
FrFT magnitude measurement, called Single-shot Fractional
Fourier Phase Retrieval (SFrFPR). To this end, we employ
the generalized alternating projection scheme to ensure the
measurement fidelity and statistical prior regularization. A
key idea is that the single FrFT measurement combined with
some simple image priors (e.g., real-valued) can effectively
mitigate ambiguities of PR, relaxing the previous conditions
on oversampled or multiple measurements. In contrast to the
Fourier measurement, SFrFPR can largely alleviate the stag-
nation problem of the reconstruction algorithms. Numerical
simulations validate the superiority of the proposed SFrFPR.

2. METHOD

In this section, we recall the relationship between FrFT and
Fresnel integral, and formulate the FrFT-based measurement
model. Then we adopt the generalized alternating projection
(AP) algorithm to solve this problem. Compared with Fourier
PR, we analyze the properties and advantages of SFrFPR.

2.1. Measurement Model based on FrFT

Based on Maxwell’s equations and reasonable simplifica-
tions, the propagation of light on two planar surfaces along

the axis z can be characterized by Fresnel integral [23]:

Uz(u, v) =
ei

2π
λ z

iλz

∫∫ ∞

−∞
U0(x, y)e

i π
λz [(u−x)2+(v−y)2]dxdy,

(1)
where λ is the wavelength of light.

The two-dimensional FrFT of the optical field U0(x, y) is
defined as

Fα[U0](u, v) =

∫∫ ∞

−∞
Kα(u, x)Kα(v, y)U0(x, y)dxdy,

(2)
where Kα(u, x) =

√
1− icotαeiπ(cotαu

2−2cscαux+cotαx2)

denotes the kernel function with α = π
2 p [18]. Here p is

the fractional order with 0 < |p| < 2. Specially, the FrFT
reduces to the (inverse) Fourier transform when p = ±1.

To connect the Fresnel integral (1) and FrFT (2), we intro-
duce the scaled fields Ûz(u, v) ≡ Uz(s2u, s2v), Û0(x, y) ≡
U0(s1x, s1y) with s1 =

√
λz

tanα , s2 =
√

λz
sinαcosα and obtain

Ûz(u, v) =
ei

2π
λ z

itanα+ 1
eiπtanα(u

2+v2)Fα[Û0](u, v), (3)

Considering the amplitude-only measurement, the spheri-
cal phase factor of (3) disappears and we can have

|Ûz(u, v)| =
1√

tan2α+ 1
|Fα[Û0](u, v)|, (4)

Thereby, we conclude that the scaled amplitude distribu-
tion of light at an intermediate plane can be interpreted as the
FrFT magnitude. In practice, given the scale factor s1 and the
propagation distance z, we can know exactly the other scale

factor s2 = s1

√
1 + (λz)2

s41
and the corresponding fractional

order p = 2
πarctan(

λz
s21
). In the scope of this work, we only

focus on the FrFT magnitude measurement.

2.2. Generalized AP Algorithm

Now the SFrFPR problem can be mathematically stated as

Given y = |Fαx| , find x. (5)

Suppose M and S are two constraint sets in Cn×n that en-
sure measurement consistency and signal prior, respectively.
Given a feasible initial point x0, the generalized AP frame-
work alternately [24] projects onto M and S:

vk = PM (xk−1), xk = PS(vk), k = 1, 2, 3, ..., (6)

where PM and PS denote projection on M and S.
The typical operation of PM is enforcing the measurement-

fidelity constraint, i.e.,

PM (xk) = F−α

(
y ◦ Fαxk

|Fαxk|

)
, (7)
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where ◦ denotes the Hadamard (element-wise) product and
F−α denotes the inverse transformation of Fα.

For the implementation of PS , the most commonly used
priors are real-valued, smoothness, and sparsity. Inspired by
the recent deep plug-and-play (PnP) technique [25], the in-
herent image priors can be implicitly imposed via solving a
regularized denoising problem:

PS(vk) = argmin
x

{
R(x) + 1

2σ2 ∥x− vk∥22
}
, (8)

where R(x) denotes a prior regularization term and σ is a
parameter about noise level.

And this problem can be solved by using any off-the-shelf
denoiser Hσ , i.e., PS(vk) = Hσ(vk). In this way, the result-
ing iterations follow (6), (7) and (8).

2.3. FrFT vs Fourier Measurement

Next we present the FrFT measurement has many unique and
useful properties that make it attractive. Specifically, the FrFT
measurement has the space-frequency coupling characteris-
tics [18], which holds features of signals both on spatial do-
main and frequency domain. Therefore, some changes of
signal on spatial domain also have effects on the FrFT mea-
surement. For example, signals of space-shift and conjugate-
inversion will produce the different FrFT measurements ac-
cording to the spatial shift and reversal property of the FrFT
[26], respectively, shown in Fig. 1.

Moreover, the FrFT measurement constraint can be well
combined with spatial characteristics of images such as real-
valued or other inherent priors to further reduce ambiguities,
illustrated in Fig. 2. On the contrary, the Fourier measurement
constraint will not work with image priors (e.g., real-valued),
suffering from the stagnation problem of numerical iterative
processes. The reason can be found in Remark 1 and Remark
2. As a result, these properties of FrFT measurement play a
big role in alleviating the ambiguities of PR and stagnation
problem of reconstruction algorithm, enabling it to stand out.

Remark 1 Suppose the ground-truth x ∈ Rn×n and the
initial point x0 ∈ Rn×n, we consider PS(vk) = real(vk)

and PM (xk) = F−1
(
|Fx| ◦ Fxk

|Fxk|

)
where real(·) denotes

the operation of taking the real part and F is the Fourier
transform. Then we can have xk = PS(PM (xk−1)) =
PM (x0), k = 1, 2, 3, ..., which can be derived by the proper-
ties of Fourier spectrum of real signals.

Remark 2 Under same conditions as in Remark 1 except
PM (xk) = F−α

(
|Fαx| ◦ Fαxk

|Fαxk|

)
with α ̸= ±π

2 , we can
obtain that xk will converge to a fixed point x∗, which can be
validated by numerical simulations, shown in Fig. 4.

Fig. 2. The illustration of numerical iterative processes of
generalized AP algorithm. Here M is the FrFT or Fourier
measurement-fidelity set and S is the set of real signals.

3. NUMERICAL SIMULATIONS

In this section, numerical simulations evaluate the proposed
method. First, we present the simulation setup. Then we
compare the performance of FrFT measurements with differ-
ent fractional orders using several PR algorithms. Finally, we
further investigate the effectiveness of FrFT measurement.

3.1. Simulation Setup

In this paper, we use the eigen decomposition-type discrete
FrFT [27]. We adopt six PR methods, including classic ap-
proach Wirtinger Flow (WF) [12] with real-valued prior and
generalized alternating projection (GAP) approaches with
various image priors such as real-valued, total variation (tv)
[28], weighted nuclear norm minimization (wnnm) [29],
block-matching and 3d filtering (bm3d) [30], and denoising
convolutional neural network (dncnn) [31]. We create our
own version of WF based on the original code, revised for
the FrFT measurement. For the denoisers involved, we use
the code made available by the respective authors’ websites.
In addition, we adopt a public dataset Set12 to quantitatively
evaluate the algorithmic performance, which includes twelve
widely-used testing images. For simplicity, all images are
resized to 128 × 128. The iteration number empirically sets
to 200 and we adopt all-one initialization for performance
comparison.

Table 1. The average PSNRs (dB) of 128 × 128 reconstruc-
tions from FrFT measurements with different orders using six
PR algorithms across the testing set.

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 1

WF-real 33.46 30.82 28.90 26.10 11.14
GAP-real 34.77 32.05 29.99 26.94 11.14
GAP-tv 32.25 32.40 32.96 33.13 11.23

GAP-wnnm 33.78 33.82 34.08 33.93 11.18
GAP-bm3d 34.95 35.17 35.57 35.46 11.14
GAP-dncnn 39.82 38.11 40.31 34.77 11.14

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 19,2023 at 08:14:33 UTC from IEEE Xplore.  Restrictions apply. 



Measurement WF-real GAP-real GAP-tv GAP-wnnm GAP-bm3d GAP-dncnn GroundTruth

p = 1 12.74 dB 12.74 dB 12.97 dB 12.80 dB 12.76 dB 12.78 dB PSNR

p = 0.7 27.56 dB 28.40 dB 32.02 dB 31.97 dB 33.21 dB 36.86 dB PSNR

p = 0.5 29.81 dB 30.89 dB 32.10 dB 32.36 dB 33.63 dB 39.93 dB PSNR

Fig. 3. Reconstruction results (PSNR) of six PR methods on FrFT measurements with different orders (p = 1, p = 0.7, and
p = 0.5, from top to bottom).

3.2. Performance Comparison

In this subsection, we compare the performance of FrFT mea-
surements with different fractional orders using six PR algo-
rithms. Table 1 reports the average recovery accuracy in terms
of mean peak-signal-to-noise ratio (PSNR) on testing dataset
Set12. It can be observed that all PR methods consistently
perform well on FrFT measurements with different fractional
orders except p = 1 that denotes the Fourier transform mea-
surement. Moreover, the reconstructing performance can be
dramatically improved with the advanced denoisers when us-
ing the FrFT measurement. On the contrary, all PR algorithms
suffer from serious stagnation and fail to recover images from
the Fourier transform measurement. Fig. 3 visually shows
the reconstructions of all PR algorithms from FrFT measure-
ments with three fractional orders, i.e., p = 1, 0.7, 0.5, re-
spectively. It can be seen that all PR algorithms can recon-
struct satisfactory images from the single FrFT measurement
but fail from the Fourier transform measurement.

3.3. Discussion

To further investigate the effectiveness of the proposed
method, we show the convergence behaviors of the FrFT mea-
surements with different orders using the GAP-real algorithm.
Fig. 4 presents the norm distance between the reconstructed
signal and the ground-truth varies with iterations. It can be
found that the error distance can gradually get smaller and
converge to a fixed point from the single FrFT measurement.
However, the GAP-real algorithm suffers from serious stag-
nation and produces an inaccurate solution from the Fourier
transform measurement. Therefore, we empirically validate

Fig. 4. Convergence behaviors of the FrFT measurements
with different orders using the GAP-real algorithm.

that the FrFT measurement can be well-combined with image
priors to effectively avoid the stagnation problem.

4. CONCLUSION

In this work, we are the first to address the problem of phase
retrieval from the single FrFT measurement. To this end, we
adopt the generalized alternating projection scheme that com-
bines properties of the FrFT measurement with image priors,
relaxing the previous conditions of oversampled or multiple
measurements. Through numerical simulations, we demon-
strate that the single FrFT measurement dramatically outper-
forms the Fourier transform measurement using several PR al-
gorithms. We believe the proposed SFrFPR can provide new
possibilities in near-field quantitative phase imaging.
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